
Robin Sommer
robin@corelight.com

Zeek 3.0.0 — and beyond

Just released: Zeek 3.0.0

2

bro -> zeek
broctl -> zeekctl
bro-cut -> zeek-cut
bro-pkg -> zkg

/usr/local/bro -> /usr/local/zeek
*.bro -> *.zeek
bro_{init,done} -> zeek_{init_done}

We got some new functionality, too

New analyzers for MQTT and NTP

Extended analyzers for DNS, RDP, SMB, and TLS

Support for decapsulating VXLAN tunnels

Support for logging in UTF-8

Language extensions:
Iteration over tables through for(key,value in t)…
Vector slicing through v[2:4]
Case-insensitive regular expressions: /foo/i
Anonymous functions now capture their closures
Efficient matching of a string against a large list of globs (paraglob)

3

New Release Schedule: Stability vs Features

3.0.0 is our first long-term stable release
Support with critical fixes for one year (3.0.x)

Feature releases will be 3.x.0
About every 4 months, plus bugfixes (3.x.y)

Next stable long-term stable release will be 4.0.0
About one year after 3.0.0

We aim to provide backwards compatibility between
subsequent stable release

Typically, we will deprecate old functionality for one stable cycle
Will discuss on mailing list in cases that’s not possible

4

Alright, what’s on the radar for 3.1.0?

5

Process Supervision

6

Worker 1 Worker 2 Worker 3Manager Logger

Persistent Zeek Supervisor Process
ZeekControl

Cluster State Sharing

We used to have &synchronize to shares tables across cluster
nodes:

global my_state[addr] of string &synchronized;

We now have Broker data stores, but their API remains
cumbersome.

Goal: Get the best of both worlds (+ persistence) by mapping
tables to a data store:

global my_state[addr] of string

 &backend=Broker::SQLITE;

7

I/O Loop Modernization

8

Performance Baselining

• Corelight-hosted testbed with traffic generator

• Cluster communication benchmark

9

Code Modernization

Move to standard containers

Switch to C++17

Apply clang-tidy (and perhaps clang-format)

Introduce automatic reference counting, maybe?

10

Osquery integration

11

event bro_init() {
 local query = [
 $ev=host_process_events,
 $query="SELECT pid,path,cmdline,cwd,uid,gid,time,parent
 FROM process_events”
];

 osquery::subscribe(query);
}

event host_process_events(resultInfo: osquery::ResultInfo,
 pid: int, path: string, cmdline: string, cwd: string,
 uid: int, gid: int, start_time: int, parent: int) {

 print fmt(“UID %d executed %s”, uid, path);
}

https://github.com/zeek/osquery-{extension,framework}

How to become involved

GitHub
Follow activity in https://github.com/zeek/zeek
File issues & PRs

Look for starter tickets

Propose ideas, and ask questions, on the
development mailing list [1]

Watch out for emerging developer’s manual
First piece: Style guide on coding conventions [2]

12

[1] https://mailman.icsi.berkeley.edu/mailman/listinfo/zeek-dev
[2] https://docs.zeek.org/en/latest/devel/style_guide.html

Robin Sommer
robin@corelight.com

Thanks!

