Baseline the Network with Zeek

Who am 1?

Network defender, analyst and integrator
Working with Bro/Zeek for about 10 years

Experience deploying, operating and leveraging Zeek in
many environments, large and small

Always looking for novel ways to use Zeek to solve network
monitoring problems

Agenda
The Problem
What are baselines?
Discuss a new Zeek module for creating them
Instrument traffic analysis techniques
Using baselines

Other considerations

The A Problem

Network Defenders Dilemma — you must understand
normal in order to identify abnormal

This is profoundly difficult, especially for new analysts

Is what is happening now normal compared what happened
10 minutes ago? yesterday? last week?

Given all the data available, where do you start?

More about the data

Most protocol metadata is qualitative
 |P address, User Agent, URL, Domain, Port Numbers

Byte and Packet counters are quantitative

Other quantitative measures:
* Duration, interval, rate

Without additional context still difficult to use to gain an
understanding of normal

What are baselines?

What are baselines? really...

A minimum or starting point used for
comparisons

How can we create and use one?

« Make quantitative observations that describe host behavior

« Record those observations in a standard, easily consumed
format

* Analyze the data, look for patterns and deviations

NetBase
(Network Baseliner)

Netbase at a high level

 For each monitored IP address record observations that
describe attributes and behaviors - observables

* Accrue these observations for a set period of time — 5 mins

« At the end of the interval, log a summary of the observations

Netbase Structure

Zeek Logger

observations

Zeek Proxy Zeek Proxy

phy
y N et IO N observables
P~

Zeek Worker Zeek Worker Zeek Worker

the observation record

type observation: record {
address: addr &log &optional;
starttime: time &log &optional;

endtime: time &log &optional;
} &redef;

the observations table

[192.168.10.9] = [address=192.168.10.9,
starttime=1570474522.835633,
endtime=<uninitialized>,
observables...],

[192.168.10.15] = [address=192.168.10.15,
starttime=1570474493.419398,
endtime=<uninitialized>,
observables...]

the observable record

type observable: record {
name: string;
val: string &optional;

5

Name corresponds to new fields added to observations record

the SEND function

function SEND(ip: addr, obs: set[observable])
{

Cluster::publish_hrw(Cluster::proxy_pool,
ip,
add_observables,
ip,
obs);
event Netbase::add_observables(ip, obs);

}

the netbase log stream

{
"address": "192.168.10.3",

“starttime": "2019-10-07T719:10:06.6527347”,
"endtime": "2019-10-07T19:15:09.413167Z7",
"ext_client_cnt": 0,

"ext_host_cnt": 1,

"ext_port_cnt": 1,

"ftp_auth_failures": O,

"ftp_failed _auth_attempts": O,

the netbase stats log stream

{
"ts":"2019-10-07T18:59:18.476335Z",

”node_id":"proxy-2",
"addr_cnt":6,
"table_size":54624

protocol-specific modules

Lets talk observables

Observable types

Currently using two types:
« Counters of occurrences
* Distinct value counts
Every time an IP’s comms meet a condition, increment a counter

Distinct counts record the number of instances of some thing

Plan to add others like: mean, max and min

Conn observables

int_port_cnt out_orig_conns int_orig_conns
int_host_cnt out_succ_conns int_succ_conns
ext_port_cnt out_rej_conns

int_rej_conns

ext_host_cnt out_to_port# int_resp_conns

DNS observables

dns_as_server dns_auth_answers dns_ext_rr_cnt

dns_as_client dns_recur_answers dns_int_rr_cnt

dns_nxdomain_sent dns_nxdomain_rcvd

HTTP observables

http_as_server http_as_client http_post_sent
http_post_recvd http_get sent http_get recvd

http_400 recvd http_400_sent

Back to the Baselines

By creating a running record of these observations, per IP, you are
in effect creating a baseline

Point in time observations that can be compared manually, visually
or statistically

Compare observations for a given IP to previous observations
Compare observations for multiple IP’s at once

Compare across other dimensions using asset information

Lets see it!

HTTP DoS

120

http_post_recvd

Y Axis = HTTP GET Received, X Axis = HTTP POST Received
All observations are for a single web server

FTP Bruteforce

Y Axis = FTP Client Failed to Authenticate, X Axis = FTP Server
Responded with Auth Failure

Port Scanning

Y Axis = Internal Host Count, X Axis = Internal Port Count, Bubble
Size = Rejected Conn count

Gotchas and limitations

Transient hosts, devices that aren’t always connected
DHCP - IP addresses may move around
Large networks, lots of IP addresses in use

May not be suitable for every host in the environment

Does it scale?

's Tracked by Proxy

S

9
8
7
6
5
4
3
2
1

S

AN WbHU O O

12:00 AM 8:00 AM 4:00 PM 12:00 AM 8:00 AM 4:00 PM 12:00 AM 8:00 AM 4:00 PM 12:00 AM 8:00 AM 4:00 PM 12:00 AM 8:00 AM 4:00 PM
Mon Sep 23 Tue Sep 24 Wed Sep 25 Thu Sep 26 Fri Sep 27
2019

Observations Table Size by Proxy

12:00 AM 8:00 AM 4:00 PM 12:00 AM 8:00 AM 4:00 PM 12:00 AM 8:00 AM 4:00 PM 12:00 AM 8:00 AM 4:00 PM 12:00 AM 8:00 AM 4:00 PM
Mon Sep 23 Tue Sep 24 Wed Sep 25 Thu Sep 26 Fri Sep 27
2019

Future Work

Get it cleaned up and released as a Zeek 3.0 package
Add new observable types: mean, max, min
Add more protocol-specific observables

Analytics

Conclusion

Network baselines are a real thing with practical application in
cyber network defense

Many ways to categorize host network behavior

Zeek is a great tool for turning behavioral observations into
quantitative data

Thank You!

adam@nimbuscyber.io

