
Baseline the Network with Zeek

Who am I?
• Network defender, analyst and integrator

• Working with Bro/Zeek for about 10 years

• Experience deploying, operating and leveraging Zeek in
many environments, large and small

• Always looking for novel ways to use Zeek to solve network
monitoring problems

Agenda
• The Problem

• What are baselines?

• Discuss a new Zeek module for creating them

• Instrument traffic analysis techniques

• Using baselines

• Other considerations

The A Problem
• Network Defenders Dilemma – you must understand

normal in order to identify abnormal

• This is profoundly difficult, especially for new analysts

• Is what is happening now normal compared what happened
10 minutes ago? yesterday? last week?

• Given all the data available, where do you start?

More about the data
• Most protocol metadata is qualitative

• IP address, User Agent, URL, Domain, Port Numbers

• Byte and Packet counters are quantitative

• Other quantitative measures:
• Duration, interval, rate

• Without additional context still difficult to use to gain an
understanding of normal

What are baselines?

A minimum or starting point used for
comparisons

What are baselines? really…

How can we create and use one?
• Make quantitative observations that describe host behavior

• Record those observations in a standard, easily consumed
format

• Analyze the data, look for patterns and deviations

NetBase
(Network Baseliner)

Netbase at a high level
• For each monitored IP address record observations that

describe attributes and behaviors - observables

• Accrue these observations for a set period of time – 5 mins

• At the end of the interval, log a summary of the observations

Netbase Structure

Zeek Worker Zeek Worker Zeek Worker

Zeek Proxy Zeek Proxy

Zeek Logger

observations

observables

the observation record

type observation: record {
address: addr &log &optional;
starttime: time &log &optional;
endtime: time &log &optional;

} &redef;

the observations table
{

[192.168.10.9] = [address=192.168.10.9,
starttime=1570474522.835633,
endtime=<uninitialized>,
observables…],

[192.168.10.15] = [address=192.168.10.15,
starttime=1570474493.419398,
endtime=<uninitialized>,
observables…]

}

the observable record

type observable: record {
name: string;
val: string &optional;

};

Name corresponds to new fields added to observations record

the SEND function
function SEND(ip: addr, obs: set[observable])

{
Cluster::publish_hrw(Cluster::proxy_pool,

ip,
add_observables,
ip,
obs);

event Netbase::add_observables(ip, obs);
}

the netbase log stream
{

"address": "192.168.10.3",
“starttime": "2019-10-07T19:10:06.652734Z”,
"endtime": "2019-10-07T19:15:09.413167Z",
"ext_client_cnt": 0,
"ext_host_cnt": 1,
"ext_port_cnt": 1,
"ftp_auth_failures": 0,
"ftp_failed_auth_attempts": 0,
…

the netbase stats log stream

{
"ts":"2019-10-07T18:59:18.476335Z",
”node_id":"proxy-2",
"addr_cnt":6,
"table_size":54624

}

protocol-specific modules

Lets talk observables

Observable types
• Currently using two types:

• Counters of occurrences
• Distinct value counts

• Every time an IP’s comms meet a condition, increment a counter

• Distinct counts record the number of instances of some thing

• Plan to add others like: mean, max and min

Conn observables
int_port_cnt

int_host_cnt

ext_port_cnt

out_orig_conns

out_succ_conns

out_rej_conns

out_to_port#ext_host_cnt

int_orig_conns

int_succ_conns

int_rej_conns

int_resp_conns

DNS observables

dns_as_server

dns_as_client

dns_auth_answers

dns_recur_answers

dns_ext_rr_cnt

dns_int_rr_cnt

dns_nxdomain_rcvddns_nxdomain_sent

HTTP observables

http_as_server http_as_client http_post_sent

http_post_recvd http_get_sent http_get_recvd

http_400_recvd http_400_sent

Back to the Baselines
• By creating a running record of these observations, per IP, you are

in effect creating a baseline

• Point in time observations that can be compared manually, visually
or statistically

• Compare observations for a given IP to previous observations

• Compare observations for multiple IP’s at once

• Compare across other dimensions using asset information

Lets see it!

HTTP DoS

Y Axis = HTTP GET Received, X Axis = HTTP POST Received
All observations are for a single web server

FTP Bruteforce

Y Axis = FTP Client Failed to Authenticate, X Axis = FTP Server
Responded with Auth Failure

Port Scanning

Y Axis = Internal Host Count, X Axis = Internal Port Count, Bubble
Size = Rejected Conn count

Gotchas and limitations
• Transient hosts, devices that aren’t always connected

• DHCP - IP addresses may move around

• Large networks, lots of IP addresses in use

• May not be suitable for every host in the environment

Does it scale?

IP’s Tracked by Proxy

Observations Table Size by Proxy

Future Work
• Get it cleaned up and released as a Zeek 3.0 package

• Add new observable types: mean, max, min

• Add more protocol-specific observables

• Analytics

• Network baselines are a real thing with practical application in
cyber network defense

• Many ways to categorize host network behavior

• Zeek is a great tool for turning behavioral observations into
quantitative data

Conclusion

Thank You!

adam@nimbuscyber.io

