
TheBro 0.8 User Manual

Vern Paxson
Lawrence Berkeley National Laboratory

and
ICSI Center for Internet Research

International Computer Science Institute
vern@icir.org

March 21, 2004

Contents

1 Introduction 9

2 Getting Started 12
2.1 Running Bro 12

2.1.1 Building and installing Bro 12
2.1.2 Using Bro interactively 14
2.1.3 Specifying policy scripts 15
2.1.4 Running Bro on network traffic 15
2.1.5 Modifying Bro policy 16
2.1.6 Bro flags and run-time environment 17

2.2 Helper utilities 19
2.2.1 Scripts 19
2.2.2 Thehf utility . 20
2.2.3 Thecf utility . 20

3 Values, Types, and Constants 21
3.1 Overview 21

3.1.1 Bro Types 21
3.1.2 Type Conversions 22

3.2 Booleans 22
3.2.1 Boolean Constants 22
3.2.2 Logical Operators 22

3.3 Numeric Types 23
3.3.1 Numeric Constants 23
3.3.2 Mixing Numeric Types 23
3.3.3 Arithmetic Operators 23
3.3.4 Comparison Operators 24

3.4 Enumerations 24
3.5 Strings 24

3.5.1 String Constants 24
3.5.2 String Operators 25

3.6 Patterns 25
3.6.1 Pattern Constants 25
3.6.2 Pattern Operators 26

1

3.7 Temporal Types 27
3.7.1 Temporal Constants 27
3.7.2 Temporal Operators 27

3.8 Port Type 28
3.8.1 Port Constants 28
3.8.2 Port Operators 29

3.9 Address Type 29
3.9.1 Address Constants 29
3.9.2 Address Operators 29

3.10 Net Type 29
3.10.1 Net Constants 30
3.10.2 Net Operators 30

3.11 Records 30
3.11.1 Defining records 30
3.11.2 Record Constants 31
3.11.3 Accessing Fields Using “$” . 32
3.11.4 Record Assignment 32

3.12 Tables 33
3.12.1 Declaring Tables 33
3.12.2 Initializing Tables 34
3.12.3 Table Attributes 35
3.12.4 Accessing Tables 37
3.12.5 Table Assignment 37
3.12.6 Deleting Table Elements 38

3.13 Sets 38
3.14 Files 39
3.15 Functions 39
3.16 Event handlers 41
3.17 Theany type .42

4 Statements and Expressions 43
4.1 Statements 43
4.2 Expressions 46

5 Global and Local Variables 53
5.1 Overview 53

5.1.1 Scope 53
5.1.2 Modifiability 54
5.1.3 Typing 54
5.1.4 Initialization 55
5.1.5 Attributes 55
5.1.6 Refinement 56

2

6 Predefined Variables and Functions 57
6.1 Predefined Variables 57

6.1.1 active.bro 57
6.1.2 alert.bro 57
6.1.3 anon.bro 57
6.1.4 backdoor.bro 58
6.1.5 bro.init 60
6.1.6 code-red.bro 63
6.1.7 conn.bro 63
6.1.8 demux.bro 64
6.1.9 dns.bro 64
6.1.10 dns-mapping.bro 65
6.1.11 finger.bro 65
6.1.12 ftp.bro 65
6.1.13 hot.bro 67
6.1.14 hot-ids.bro 68
6.1.15 http.bro 68
6.1.16 http-abstract.bro 69
6.1.17 http-request.bro 69
6.1.18 icmp.bro 70
6.1.19 ident.bro 70
6.1.20 interconn.bro 70
6.1.21 login.bro 72
6.1.22 mime.bro 74
6.1.23 ntp.bro 74
6.1.24 port-names.bro 74
6.1.25 portmapper.bro 75
6.1.26 rules.bro 76
6.1.27 scan.bro 76
6.1.28 site.bro 79
6.1.29 smtp.bro 79
6.1.30 smtp-relay.bro 80
6.1.31 software.bro 81
6.1.32 ssh.bro 81
6.1.33 stepping.bro 81
6.1.34 tftp.bro 83
6.1.35 udp.bro 83
6.1.36 weird.bro 83
6.1.37 worm.bro 83
6.1.38 Uncategorized 84

6.2 Predefined Functions 85
6.2.1 Run-time errors for non-existing connections 91
6.2.2 Run-time errors for strings with NULs 91
6.2.3 Functions for manipulating strings 91
6.2.4 Functions for manipulating time 91

3

7 Analyzers and Events 92
7.1 Activating an Analyzer 92

7.1.1 Loading Analyzers 92
7.1.2 Filtering 93

7.2 General Processing Events 94
7.3 Generic Connection Analysis 95

7.3.1 Theconnection record . 96
7.3.2 Definitions of connections 98
7.3.3 Generic TCP connection events 99
7.3.4 Thetcp analyzer . 100
7.3.5 Theudp analyzer . 100
7.3.6 Connection summaries 101
7.3.7 Connection functions 103

7.4 Site-specific information 105
7.4.1 Site variables 105
7.4.2 Site-specific functions 106

7.5 Thehot Analyzer .. 106
7.5.1 hot variables .. 106
7.5.2 hot functions .110

7.6 Thescan Analyzer .112
7.6.1 scan variables .112
7.6.2 scan functions .114
7.6.3 scan event handlers .. 114

7.7 Theport-name Module . 115
7.8 Themt Module .. 115
7.9 Thelog Module .115
7.10 Theactive Module . 117
7.11 Thedemux Module . 117
7.12 Thedns Module .118

7.12.1 Thedns mapping record . 118
7.12.2 dns variables .. 119
7.12.3 dns event handlers .. . 119

7.13 Thefinger Analyzer . 120
7.13.1 finger variables . 120
7.13.2 finger event handlers . 120

7.14 Thefrag Module . 121
7.15 Thehot-ids Module . 121
7.16 Theftp Analyzer .. 122

7.16.1 Theftp session info record . 122
7.16.2 ftp variables .. 123
7.16.3 ftp functions .125
7.16.4 ftp event handlers .. . 126

7.17 Thehttp Analyzer .127
7.17.1 http variables .127
7.17.2 http event handlers .. 128

7.18 Theident Analyzer . 128

4

7.18.1 ident variables . 129
7.18.2 ident event handlers .129

7.19 Thelogin Analyzer . 130
7.19.1 login analyzer confusion .. 131
7.19.2 login variables . 131
7.19.3 login functions . 137
7.19.4 login event handlers .138

7.20 Theportmapper Analyzer . 142
7.20.1 portmapper variables . 143
7.20.2 portmapper functions . 144
7.20.3 portmapper event handlers . 146

7.21 Theanaly Analyzer . 148
7.22 Thesignature Module . 148
7.23 TheSSL Analyzer .. 149

7.23.1 Thex509 record . 150
7.23.2 Thessl connection info record . 150
7.23.3 SSL variables .. 151
7.23.4 SSL event handlers .. . 152

7.24 Theweird Module . 154
7.24.1 Actions for “weird” events 154
7.24.2 weird variables . 154
7.24.3 weird functions . 156
7.24.4 Events handled byconn weird . 156
7.24.5 Events handled byconn weird addl . 160
7.24.6 Events handled byflow weird . 161
7.24.7 Events handled bynet weird . 162
7.24.8 Events generated by the standard scripts 163
7.24.9 Additional handlers for “weird” events 163

7.25 Theicmp Analyzer .164
7.26 Thestepping Analyzer . 164
7.27 Thessh-stepping Module . 164
7.28 Thebackdoor Analyzer . 164
7.29 Theinterconn Analyzer . 164

8 Signatures 165
8.1 Overview 165
8.2 Signature language 165

8.2.1 Conditions 166
8.2.2 Actions 168

8.3 snort2bro 168

9 Interactive Debugger 170
9.1 Overview 170
9.2 A Sample Session 170
9.3 Usage 172
9.4 Notes and Limitations 172

5

9.5 Reference 172

10 Missing Documentation 176
10.1 The use ofprefixes . 176
10.2 The tcpdump save file that Bro writes 176
10.3 Thebro.init initialization file .. . 176
10.4 Assignment operators such as+= . 176
10.5 The notion of redefinition/refinement 176
10.6 The logging model 176
10.7 Timer management 177
10.8 SYN-FIN filtering 177
10.9 Split routing 177
10.10 Scan dropping 177
10.11 Operator precedence 177
10.12 Partial connections 177
10.13 Packet drops 177
10.14 The@load directive .177
10.15 Global statements 177
10.16 Inserting tables into tables 177
10.17 Demultiplexing 178
10.18 Bro init file 178
10.19 Hostnames vs. addresses 178
10.20 The hot-report script 178
10.21 Use of libpcap/BPF 178
10.22 The problem of evasion 178
10.23 Backscatter 178
10.24 Playing back traces 178
10.25 Discarders 178
10.26 Differences between this release and the previous one. 178
10.27 Alert cascade 179
10.28 The need for subtyping 179
10.29 The need for CIDR masks 179
10.30 The wish list 179
10.31 Known bugs 179

6

List of Figures

7.1 print-filter prints out thetcpdump filter your Bro script would use and then exits. 94
7.2 Definition of thenet stats record. 96
7.3 Definition ofconn id andconnection records. 97
7.4 Sample definition oflog hook . 116
7.5 Definition of thedns mapping record. 118
7.6 Definition of theftp session info record . 122
7.7 Example of FTP log file entries for a single FTP session. . .. 124
7.8 Example of HTTP log file entries for a single HTTP session.. 127
7.9 Definition of thex509 record . 150
7.10 Definition of thessl connection info record . 150
7.11 Example of SSL log file with a single SSL session. 152

8.1 Definition of thesignature state record. 168

7

List of Tables

6.1 Different types of directions forset contents file . 89

7.1 TCP and UDP connection states, as stored in anendpoint record. 97
7.2 Summaries of connection states, as reported inred files. 102
7.3 Different connection states to use when callingcheck hot . 111
7.4 Different types of confusion thatlogin analyzer can report. 132
7.5 Types of calls to the RPC portmapper service. 142
7.6 Types of RPC status codes. 146
7.7 endpoint stats fields for summarizing connection endpoint statistics 148
7.8 Possible actions to take for signatures matches.signatures-log defaults to

open log file("signatures") . 149
7.9 Different types of possible actions to take for “weird” events. 155

8

Chapter 1

Introduction

Bro is an intrusion detection system that works by passivelywatching traffic seen on a network link. It is built around
anevent enginethat pieces network packets into events that reflect different types of activity. Some events are quite
low-level, such as the monitor seeing a connection attempt;some are specific to a particular network protocol, such as
an FTP request or reply; and some reflect fairly high-level notions, such as a user having successfully authenticated
during a login session.

Bro runs the events produced by the event engine through apolicy script, which you (the Bro administrator) supply,
though in general you will do so by using large portions of thescripts (“analyzers”; see below) that come with the Bro
distribution.

You write policy scripts in “Bro”, a specialized language geared towards network analysis in general and security
analysis in particular. Bro scripts are made up ofevent handlersthat specify what to do whenever a given event
occurs. Event handlers can maintain and update global stateinformation, write arbitrary information to disk files,
generate new events, call functions (either user-defined orpredefined), generatealerts that producesyslogmessages,
and invoke arbitrary shell commands. These latter might terminate a running connection or talk to your border router
to install an ACL prohibiting traffic from a particular host,for example.

The Bro language is strongly typed and includes a bunch of types designed to aid analyzing network traffic. It also
supportsimplicit typing, meaning that often you don’t need to explicitly indicate a variable’s type because Bro can
figure it out from context. This feature makes the strong typing a bit less of a pain, while retaining its bug-finding
benefits.

For high performance, Bro relies on use of an efficientpacket filterto capture only a (hopefully small) subset
of the traffic that transits the link it monitors. Related to this, Bro comes with a set ofanalyzers, that is, scripts for
analyzing different protocols and different types of activity. In general you can pick and choose among these for which
types of analysis you want to enable, and Bro will only capture traffic relating to the analyzers you choose. Thus, you
can control how much work Bro has to do by the analyzers you designate, a potentially major consideration if the
monitored link has a high volume of traffic.

Experience has shown that the policy scripts often require tailoring to each environment in which they’re used; but
if the tailoring is done by editing the analyzers supplied with the Bro distribution, you wind up with multiple copies of
the analyzers, all slightly different, such that when you want to make a general change to all of them, it takes careful
(and tedious) editing to correctly apply the change to all ofthe copies.

Consequently, Bro emphasizes the use of tables and sets of values as ways to codify policy particulars such as
which hosts should generate alerts if seen engaged in various types of connections, which usernames are sensitive
and should trigger alerts when used, and so on. The various analyzers are written such that you can (often) customize

9

them by simply changing variables associated with the analyzer. Furthermore, Bro supports a notion ofrefining the
initialization of a variable, so that, in aseparatefile from the one defining an analyzer, you can either(i) redefine
the variable’s initial value,(ii) add new elements to a given table, set or pattern, or(iii) removeelements from a given
table or set. In a nutshell, refinement allows you to specify particular policies in terms of theirdifferencesfrom existing
policies, rather than in their entirety.

You can find an overview of Bro in the paper “Bro: A System for Detecting Network Intruders in Real-Time,”
Proceedings of the 1998 USENIX Security Symposium [Pa98], and a revised version inComputer Networks[Pa99].
A copy of the latter is included in the Bro distribution.

Using this manual.This manual is intended to provide full documentation for users of Bro, both those who wish
to write Bro scripts to use Bro’s existing analyzers, and those who wish to implement event engine support for new
Bro analyzers. The current version of the manual isincomplete; in particular, it does not discuss the internals of the
event engines, and a number of other topics have only placeholders.

The manual is organizednot as a tutorial, but rather closer to a reference manual. In particular, the intent is for the
indexto be highly comprehensive, and to serve as one of the main tools to help you navigate through Bro’s numerous
features and capabilities. Accordingly, the index contains many “redundant” entries, that is, the same information
indexed in multiple ways, to try to make it particularly easyto look up information. For example, you’ll find a list of
all of the predefined functions under “predefined functions”, and also under “functions”. There are similar entries for
“events” and “variables”.

The manual also includesNote:’s andDeficiency:’s that emphasize points that may be subtle or counter-intuitive,
or that reflect bugs of some form. The general delineation between the two is thatNote:’s discuss facets of Bro not
likely to change, whileDeficiency:’s will (should) eventually get fixed.

I’m very interested in feedback on whether the manual in general and the index in particular is effective, what
should be added or removed from it to improve it, any errors found in the index or (of course) elsewhere in the manual,
and what topics you would give the highest priority for the next revision of the manual. In addition,any contributions
to the manualwill be highly welcome! You’ll find the source for the manual in doc/manual-src/.

The current version of the manual is organized as follows. Webegin with an overview of how to get started using
Bro: building and installing it, running it interactively and on live and prerecorded network traffic, and the helper
utilities (scripts and programs) included in the distribution (Chapter 2).

Chapter 3 then discusses the different types, values, and constants that Bro supports. The intent is to provide you
with some of the flavor of the language. In addition, later chapters use these concepts to explain things like the types
associated with the arguments passed to different event handlers.

Chapter 6 lists the different variables and functions that Bro predefines. The variables generally reflect particular
values that control the behavior of the event engine or reflect its status, and the functions are for the most part utilities
to aid in the writing of Bro scripts.

Chapter 7 discusses the different analyzers that Bro provides. It is far and away the longest chapter, since there are
a good number of analyzers, and some of them are quite rich in their analysis.

Chapter 8 describes how to use Bro’ssignature engine. The signature engine provides a general mechanism for
searching for regular expressions in packet payloads or reassembled TCP byte streams. Successful matches can then
be fed as events into your policy script for further analysis, including the opportunity to assess the match in terms of
surrounding context, which can greatly reduce the problem of “false positives” from which signature-matching can
suffer. The chapter also discusses how to incorporate rulesfrom the popularSnortintrusion detection system.

Chapter 9 gives an overview of Bro’sinteractive debugger. The debugger allows you to breakpoint your policy
script and inspect and change the values of script variables. The chapter also describes the generation oftracesof all
of the events generated during execution.

Finally, Chapter 10 briefly lists different aspects of Bro that have not yet been documented (in addition to the event
engine and the Bro language itself).

10

Acknowledgments:
Major components of Bro’s functionality were contributed by Ruoming Pang, Umesh Shankar, Robin Sommer,

and Chema Gonzalez. Robin also wrote Chapter 8 of this manual; Umesh wrote Chapter 9; and Michael Kuhn and
Benedikt Ostermaier contributed the SSL analyzer (with additional development by Scott Campbell) and the associated
documentation.

Many thanks, too, to Craig Leres, Craig Lant, Jim Mellander,Anne Hutton, David Johnston, Mark Handley, and
Partha Banerjee for their contributions and operational feedback.

Finally, a number of people were instrumental to supportingBro’s development: Jim Rothfuss, Mark Rosenberg,
Stu Loken, Van Jacobson, Dave Stevens, and Jeff Mogul. Again, many thanks!

11

Chapter 2

Getting Started

This chapter gives an overview of how to get started with operating Bro:(i) compiling it, (ii) running it interactively,
on live network traffic, and on recorded traces,(iii) how Bro locates the policy files it should evaluate and how to
modify them,(iv) the arguments you can give it to control its operation, and(v) some helper utilities also distributed
with Bro that you’ll often find handy.

2.1 Running Bro

This section discusses how to build and install Bro, runningit interactively (mostly useful for building up familiarity
with the policy language, not for traffic analysis), runningit on live and recorded network traffic, modifying Bro policy
scripts, and the different run-time flags.

2.1.1 Building and installing Bro

Supported platforms

Bro builds on a number of types of Unix: FreeBSD, Solaris, Linux, SunOS, and Digital Unix, though not all versions.
It doesnot build under non-Unix operating systems such as Windows NT.

The Bro source code distribution

You can get the latest public release of Bro from the Bro web page,http://www.icir.org/vern/bro.html .
Bro is distributed as agzip’d Unix tar archive, which you can unpack using:

gzcat tar-file | tar xf -

or, on some Unix systems:

tar zxf tar-file

This creates a subdirectorybro- XXX- version, whereXXX is a tag such aspub for public releases andpriv for pri-
vate releases, andversionreflects a version and possibly a subversion, such as0.8a20 for version0.8and subversion
a20.

To build Bro, change to the Bro directory and enter:

12

./configure
make

Fix me: Need to discuss configuration options here.--enable-brov6
This will compile all of the Bro sources, including a versionof the BIND DNS library, version 8, which Bro uses

for its non-blocking DNS lookups.
Note: For Linux systems, you may need to use the header files inthe linux-include/subdirectory included in the

Bro distribution to successfully compile Bro.

Installing Bro

You install Bro by issuing:

make install

Note: I don’t actually use this functionality myself, so it does not tend to be well tested and may have bugs.

Tuning BPF

Bro is written usinglibpcap the portable packet-capture library available fromftp://ftp.ee.lbl.gov/
libpcap.tar.Z . While libpcapknows how to use a wide range of Unix packet filters, it far and away performs
most efficiently used in conjunction with the Berkeley Packet Filter (BPF) and with BPF descendants (such as the
Digital Unix packet filter). Althought BPF is available fromftp://ftp.ee.lbl.gov/bpf.tar.Z , installing it
involves modifying your kernel, and perhaps requires significant porting work. However, it comes as part of several
operating systems, such as FreeBSD, NetBSD, and OpenBSD.

For BPF systems, you should be aware of the follwoing tuning and configuration issues:

BPF kernel support You need to make sure that kernel support for BPF is enabled. In addition, some systems default
to configuring kernel support for only one BPF device. This often proves to be a headache because it means you
cannot run more than one Bro at a time, nor can you run it at the same time astcpdump .

/dev/bpf devicesRelated to the previous item, on BPF systems access to the packet filter is via special/dev/bpf
devices, such as/dev/bpf0. Just as you need to make sure that the kernel’s configurationsupports multiple BPF
devices, so to must you make sure that an equal number of device files reside in/dev/.

packet filter permissions On systems for which access to the packet filter is via the file system, you should consider
whether you want to only allow root access, or instead createa Unixgroupfor which you enable read access to
the device file(s). The latter allows you to run Bro as a user other than root, which isstrongly recommended!

large BPF buffers While running with BPF is often necessary for high performance, it’s not necessarily sufficient.
By default, BPF programs use very modest kernel buffers for storing packets, which leads to high context switch
overhead as the kernel very often has to deliver packets to the user-level Bro process. Minimizing the overhead
requires increasing the buffer sizes. This can make alargedifference!

Under FreeBSD, the configuration variable to increase isdebug.bpf bufsize , which you can set viasysctl.
We recommend creating a script run at boot-up time that increases it from its small default value to something
on the order of 100 KB–2 MB, depending on how fast (heavily loaded) is the link being monitored, and how
much physical memory the monitor machine has at its disposal.

13

Important note: some versions oflibpcapave internal code that limits the maximum buffer size to 32 KB. For
these systems, you should apply the patch included in the Brodistribution in the filelibpcap.patch .

Finally, once you have increased the buffer sizes, you should checkthat running Bro does indeed consume the
amount of kernel memory you expect. You can do this under FreeBSD usingvmstat -mand searching in the
output for the summary of BPF memory. You should find that theMemUsestatistic goes up by twice the buffer
size for every concurrent Bro ortcpdump you run.1 The reason the increase is by twice the buffer size is
because Bro uses double-buffering to avoid dropping packets when the buffer fills up.

2.1.2 Using Bro interactively

Once you’ve built Bro, you can run it interactively to try outsimple facets of the policy language. Note that in this
mode, Bro isnot reading network traffic, so you cannot do any traffic analysis; this mode is simply to try out Bro
language features.

You run Bro interactively by simply executing “bro ” without any arguments. It then reads fromstdinand writes
to stdout.

Try typing the following to it:

print "hello, world";
ˆD (i.e., end of file)

(The end-of-file is critical to remember. It’s also a bit annoying for interactive evaluation, but reflects the fact that Bro
is not actually meant for interactive use, it simply works asa side-effect of Bro’s structure.)

Bro will respond by printing:

hello, world

to stdoutand exiting.
You can further declare variables and print expressions, for example:

global a = telnet;
print a, a > ftp;
print www.microsoft.com;

will print

23/tcp, T
207.46.230.229, 207.46.230.219, 207.46.230.218

where23/tcp reflects the fact thattelnet is a predefined variable whose value is TCP port 23, which is larger than
TCP port 21 (i.e.,ftp); and the DNS namewww.microsoft.comcurrently returns the above three addresses.

You can also define functions:

function top18bits(a: addr): addr
{
return mask_addr(a, 18);
}

print top18bits(128.3.211.7);
1Providing that these programs have been recompiled with thecorrectedlibpcapnoted above.

14

prints

128.3.192.0

and even event handlers:

event bro_done()
{
print "all done!";
}

which prints “all done! ” when Bro exits.

2.1.3 Specifying policy scripts

Usually, rather than running Bro interactively you want it to execute a policy script or a set of policy scripts. You do
so by specifying the names of the scripts as command-line arguments, such as:

bro ˜/my-policy.bro ˜/my-additional-policy.bro

Bro provides several mechanisms for simplifying how you specify which policies to run.
First, if a policy file doesn’t exist then it will try again using .bro as a suffix, so the above could be specified as:

bro ˜/my-policy ˜/my-additional-policy

Second, Bro consults the colon-separated search path$BROPATHto locate policy scripts. If your home directory
was listed in$BROPATH, then you could have invoked it above using:

bro my-policy my-additional-policy

Note: If you define$BROPATH, you must includebro-dir/policy , wherebro-dir is where you have built or
installed Bro, because it has to be able to locatebro-dir/policy/bro.init to initialize itself at run-time.

Third, the@load directive can be used in a policy script to indicate the Bro should at that point process another
policy script (like C’sinclude directive; see§ 7.1.1, page 92). So you could have inmy-policy:

@load my-additional-policy

and then just invoke Bro using:

bro my-policy

providing youalwayswant to loadmy-additional-policywhenever you loadmy-policy.
Note that the predefined Bro modulemt loads almost all of the other standard Bro analyzers, so you can pull them

in with simply:

@load mt

or by invoking Bro using “bro mt my-policy”.

2.1.4 Running Bro on network traffic

There are two ways to run Bro on network traffic: on traffic captured live by the network interface(s), and on traffic
previously recorded using the-w flag of tcpdump or Bro itself.

15

Live traffic

Bro reads live traffic from the local network interface whenever you specify the-i flag. As mentioned below, you can
specify multiple instances to read from multiple interfaces simultaneously, however the interfaces must all be of the
same link type (e.g., you can’t mix reading from a Fast Ethernet with reading from an FDDI link, though you can mix
a 10 Mbps Ethernet interface with a 100 Mbps Ethernet).

In addition, Bro will read live traffic from the interface(s)listed in theinterfaces variable,unlessyou specify
the-r flag (and do not specify-i). So, for example, if your policy script contains:

const interfaces += "sk0";
const interfaces += "sk1";

then Bro will read from thesk0andsk1interfaces, and you don’t need to specify-i .

Traffic traces

To run on recorded traffic, you use the-r flag to indicate the trace file Bro should read. As with-i , you can use the
flag multiple times to read from multiple files; Bro will mergethe packets from the files into a single packet stream
based on their timestamps.

The Bro distribution includes an example trace that you can try out, example.ftp-attack.trace. If you invoke Bro
using:

setenv BRO_ID example
bro -r example.ftp-attack.trace mt

you’ll see that it generates a connection summary tostdout, a summary of the FTP sessions toftp.example , a copy
of what would have been real-time alerts had Bro been runningon live traffic tolog.example , and a summary of
unusual traffic anomalies (none in this trace) toweird.example .

2.1.5 Modifying Bro policy

One way to alter the policy Bro executes is of course to directly edit the scripts. When this can be avoided, however,
that is preferred, and Bro provides a pair of related mechanisms to help you specifyrefinementsto existing policies in
separate files.

The first such mechanism is that you can definemultiplehandlers for a given event. So, for example, even though
the standardftp analyzer (bro-dir/policy/ftp.bro) defines a handler forftp request , you can define an-
other handler if you wish in your own policy script, even if that policy script loads (perhaps indirectly, via themt
module) theftp analyzer. When the event engine generates anftp request event,bothhandlers will be invoked.
Deficiency: Presently, you do not have control over the orderin which they are invoked; you also cannot completely
override one handler with another, preventing the first frombeing invoked.

Second, the standard policy scripts are often written in terms ofredefinablevariables. For example,ftp.bro con-
tains a variableftp guest ids that defines a list of usernames the analyzer will consider toreflect guest accounts:

const ftp_guest_ids = { "anonymous", "ftp", "guest", } &red ef;

While “const ” marks this variables as constant at run-time, the attribute “&redef ” specifies that its value can be
redefined.

For example, in your own script you could have:

16

redef ftp_guest_ids = { "anonymous", "guest", "visitor", " student" };

instead. (Note the use of “redef ” rather than “const ”, to indicate that you realize you are redefining an existing
variable.)

In addition, for most types of variables you can specifyincrementalchanges to the variable, either new elements
to add or old ones to subtract. For example, you could insteadexpress the above as:

redef ftp_guest_ids += { "visitor", "student" };
redef ftp_guest_ids -= "ftp";

The potential advantage of incremental refinements such as these are that if anyotherchanges are made toftp.bro ’s
original definition, your script will automatically inherit them, rather than replacing them if you used the first definition
above (which explicitly lists all four names to include in the variable). Sometimes, however, you don’t want this form
of inheriting later changes; you need to decide on a case-by-case basis, though our experience is that generally the
incremental approach works best.

Finally, the use ofprefixesprovides a way to specify a whole set of policy scripts to loadin a particular context. For
example, if you set$BROPREFIXES to “dialup ”, then a load offtp.bro will also load dialup.ftp.bro
automatically (if it exists). See§ 10.1, page 176 for further discussion.

2.1.6 Bro flags and run-time environment

Flags

When invoking Bro, you can control its behavior using the following flags:

-f filter
Usefilter as thetcpdump filter for capturing packets, rather than the combination ofcapture filter and
restrict filter , or the default of “tcp or udp ” (§ 7.1.2, page 93).

-h
Generate a help message summarizing Bro’s options and environment variables, and exit.

-i interface
Add interfaceto the list of interfaces from which Bro should read network traffic (§ 2.1.4, page 16). You can

use this flag multiple times to direct Bro to read from multiple interfaces. You can also, or in addition, use
refinements of theinterfaces variable to specify interfaces.

Note that if no interfaces are specified, then Bro will not read any network traffic. It doesnot have a notion of a
“default” interface from which to read.

-p prefix
Add prefix to the list of prefixes searched by Bro when@load ’ing a script. You can also, or in addition, use

@prefix to specify search prefixes. See§ 10.1, page 176 for discussion.

-r readfile
Add readfile to the list of tcpdump save files that Bro should read. You can use this flag multiple times to

direct Bro to read from multiple save files; it will merge the packets read from the different files based on their
timestamps. Note that if the save files contain only packet headers and not contents, then of course Bro’s analysis
of them will be limited.

Note that use of-r is mutually exclusivewith use of-i . However, you can use-r when running scripts that
refineinterfaces , in which case the-r option takes precedence and Bro performs off-line analysis.

17

-s signaturefile
Add signaturefile to the list of files containing signatures to match against the network traffic. See

signatures for more information about signatures.

-w writefile
Write a tcpdump save file to the filewritefile. Bro will record all of the packets it captures, including their

contents, except as controlled by calls toset record packets .

Note: One exception is that unless you are analyzing HTTP events (for example, by@load ’ing the http
analyzer), Bro doesnot record thecontentsof HTTP SYN/FIN/RST packets to the trace file. The reason for
this is that HTTP FIN packets often contain a large amount of data, which is not of any interest if you are not
using HTTP analysis, and due to the very high volume of HTTP traffic at many sites, removing this data can
significantly reduce the size of the save file. Deficiency: Clearly, this should not be hardwired into Bro but under
user control.

Save files written using-w are of course readable using-r . Accordingly, you will generally want to use-w
when running Bro on live network traffic so you can rerun it off-line later to understand any problems that arise,
and also to experiment with the effects of changes to the policy scripts.

You can also combine-r with -w to both read a save file(s) and write another. This is of interest when using
multiple instances of-r , as it provides a way to mergetcpdump save files.

-v
Print the version of Bro and exit.

-F
Instructs Bro that itmustresolve all hostnames out of its private DNS cache (§ 7.12, page 118). If the script

refers to a hostname not in the cache, then Broexitswith a fatal error.

The point behind this option is to ensure that Bro starts quickly, rather than possibly stalling for an indeterminant
amount of time resolving a hostname. Fast startup simplifiescheckpointing a running Bro—you can start up a
new Bro and then killing off the old one shortly after. You’d like this to occur in a manner such that there’s no
period during which neither Bro is watching the network (theolder because you killed it off too early, the newer
because it’s stuck resolving hostnames).

-O
Turns on Bro’s optimizer for improving its internal representation of the policy script.Note: Currently, the

amount of improvement is modest, and there’s (as always) a risk of an optimizer bug introducing errors into the
execution of the script, so the optimizer is not enabled by default.

-P
Instructs Bro toprime its private DNS cache (§ 7.12, page 118). It does so by parsing the policy scripts, but

not executing them. Bro looks up each hostname’s address(es) and records them in the private cache. The idea
is that oncebro -P finishes, you can then usebro -F to start up Bro quickly because it will read all the
information it needs from the cache.

-W
Instructs Bro to activate its internalwatchdog. The watchdog provides self-monitoring to enable Bro to detect
if its processing is wedged.

Bro only activates the watchdog if it is reading live networktraffic. The watchdog consists of a periodic timer
that fires everyWATCHDOGINTERVAL seconds. (Deficiency: clearly this should be a user-definable value.)

18

At that point, the watchdog checks to see whether Bro is stillworking on the same packet as it was the last
time the watchdog expired. If so, then the watchdog logs thisfact along with some information regarding when
Bro began processing the current packet and how many events it processed after handling the packet. Finally, it
prints the packet drop information for the different interfaces Bro was reading from, and aborts execution.

Run-time environment

Bro is also sensitive to the following environment variables:

$BROPATH
A colon-separated list of directories that Bro searches whenever you@load a policy file. It loads the first
instance it finds (though see$BROPREFIXESfor how a single@load can lead to Bro loading multiple files).

Default: if you don’t set this variable, then Bro uses the path

.:policy:policy/local:/usr/local/lib/bro

That is, the current directory, anypolicy/ andpolicy/local/ subdirectories, and/usr/local/lib/bro/.

$BROPREFIXES
A colon-separate lists ofprefixesthat Bro should apply to each name in a@load directive. For a given prefix
and load-name, Bro constructs the filename:

prefix. load-name.bro

(where it doesn’t add.bro if load-namealready ends in.bro). It then searches for the filename using
$BROPATHand loads it if its found. Furthermore, itrepeatsthis process for all of the other prefixes (left-
to-right), and loadseachfile it finds for the different prefixes.Note: Broalsofirst attempts to load the filename
without any prefix at all. If this load fails, then Bro exits with an error complaining that it can’t open the given
@load file.

For example, if you set$BROPREFIXES to:

mysite:mysite.wan

and then issue “@load ftp ”, Bro will attempt to load each of the following scripts in the following order:

ftp.bro
mysite.ftp.bro
mysite.wan.ftp.bro

Default: if you don’t specify a value for$BROPREFIXES, it defaults to empty, and for the example above Bro
would only attempt to@load ftp.bro .

2.2 Helper utilities

2.2.1 Scripts

Documentation missing.

19

2.2.2 Thehf utility

Thehf utility reads text onstdinand attempts to convert any “dotted quads” it sees to hostnames. It is very convenient
for running on Bro log files to generate human-readable forms. See the manual page included with the distribution for
details.

2.2.3 Thecf utility

Thecf utility reads Unix timestamps at the beginning of lines onstdinand converts them to human-readable form. For
example, for the input line:

972499885.784104 #26 131.243.70.68/1899 > 64.55.26.206/ ftp start

it will generate:

Oct 25 11:51:25 #26 131.243.70.68/1899 > 64.55.26.206/ftp start

It takes two flags:

-l
specifies thelong human-readable form, which includes the year. For example,on the above input, the output
would instead be:

Oct 25 11:51:25 2000 #26 131.243.70.68/1899 > 64.55.26.206 /ftp start

-s
specifiesstrict checking to ensure that the number at the beginning of a line is a plausible timestamp: it must
have at least 9 digits, at most one decimal, and must have a decimal if there are 10 or more digits.

Without -s , an input like:

131.243.70.68 > 64.55.26.206

generates the output:

Dec 31 16:02:11 > 64.55.26.206

which, needless to say, is not very helpful.Deficiency: It seems clear that-s should be the default behavior.

20

Chapter 3

Values, Types, and Constants

3.1 Overview

We begin with an overview of the types of values supported by Bro, giving a brief description of each type and
introducing the notions of type conversion and type inference. We discuss each type in detail in§ 3.2–§ 3.17 below.

3.1.1 Bro Types

There are 18 types of values in the Bro type system:

• bool for Booleans;

• count , int , anddouble types, collectively callednumeric, for arithmetic and logical operations, and com-
parisons;

• enum for enumerated types similar to those in C;

• string , character strings that can be used for comparisons and to index tables and sets;

• pattern , regular expressions that can be used for pattern matching;

• time andinterval , for absolute and relative times, collectively termedtemporal;

• port , a TCP or UDP port number;

• addr , an IP address;

• net , a network prefix;

• record , a collection of values (of possibly different types), eachof which has a name;

• table , an associative array, indexed by tuples of scalars and yielding values of a particular type;

• set , a collection of tuples-of-scalars, for which a particulartuple’s membership can be tested;

• file , a disk file to write or append to;

21

• function , a function that when called with a list of values (arguments) returns a value;

• event , an event handler that is invoked with a list of values (arguments) any time an event occurs.

Every value in a Bro script has one of these types. For most types there are ways of specifyingconstantsrepre-
senting values of the type. For example,2.71828 is a constant of typedouble , and80/tcp is a constant of type
port . The discussion of types in§ 3.2–§ 3.17 below includes a description of how to specify constants for the types.

Finally, even though Bro variables havestatic types, meaning that their type is fixed, often their type isinferred
from the value to which they are initially assigned when the variable is declared. For example,

local a = "hi there";

fixesa’s type asstring , and

local b = 6;

setsb’s type tocount . See§ 5.1.3, page 55 for further discussion.

3.1.2 Type Conversions

Some types will be automatically converted to other types asneeded. For example, acount value can always be used
where adouble value is expected. The following:

local a = 5;
local b = a * .2;

creates a local variablea of typecount and assigns thedouble value1.0 to b, which will also be of typedouble .
Automatic conversions are limited to converting betweennumerictypes. The rules for how types are converted are
given below.

3.2 Booleans

Thebool type reflects a value with one of two possible meanings:trueor false.

3.2.1 Boolean Constants

There are twobool constants:T andF. They represent the values of “true” and “false”, respectively.

3.2.2 Logical Operators

Bro supports three logical operators:&&, || , and! are Boolean “and,” “or,” and “not,” respectively.&&and|| are
“short circuit” operators, as in C: they evaluate their right-hand operand only if needed.

The && operator returnsF if its first operand evaluates tofalse, otherwise it evaluates its second operand and
returnsT if it evaluates totrue. The || operator evaluates its first operand and returnsT if the operand evaluates to
true. Otherwise it evaluates its second operand, and returnsT if it is true, F if false.

The unary! operator returns the boolean negation of its argument. So,! T yieldsF, and! F yieldsT.
The logical operators are left-associative. The! operator has very high precedence, the same as unary+ and- ; see

§ 3.3.3 and§ 10.11. The|| operator has precedence just below&&, which in turn is just below that of the comparison
operators (see§ 3.3.4, page 24).

22

3.3 Numeric Types

int , count , anddouble types should be familiar to most programmers as integer, unsigned integer, and double-
precision floating-point types.

These types are referred to collectively asnumeric. Numerictypes can be used in arithmetic operations (see§ 3.3.3
below) as well as in comparisons (§ 3.3.4, page 24).

3.3.1 Numeric Constants

count constants are just strings of digits:1234 and0 are examples.
integer constants are strings of digits preceded by a+ or - sign:-42 and+5 for example. Because digit strings

without a sign are of typecount , occasionally you need to take care when defining a variable if it really needs to be
of type int rather thancount . Because of type inferencing (§ 5.1.3, page 55), a definition like:

local size_difference = 0;

will result in size difference having typecount when int is what’s instead needed (because, say, the size
difference can be negative). This can be resolved either by using anint constant in the initialization:

local size_difference = +0;

or explicitly indicating the type:

local size_difference: int = 0;

You write floating-point constants in the usual ways, a string of digits with perhaps a decimal point and perhaps a
scale-factor written in scientific notation. Optional+ or - signs may be given before the digits or before the scientific
notation exponent. Examples are-1234. , -1234e0 , 3.14159 , and.003e-23 . All floating-point constants are
of typedouble .

3.3.2 Mixing Numeric Types

You can freely intermixnumerictypes in expressions. When intermixed, values are promotedto the “highest” type
in the expression. In general, this promotion follows a simple hierarchy:double is highest,int comes next, and
count is lowest. (Note thatbool is not a numeric type.)

3.3.3 Arithmetic Operators

For doing arithmetic, Bro supports+, - , * , / , and%. In general, binary operators evaluate their operands after con-
verting them to the higher type of the two and return a result of that type. However, subtraction of twocount values
yields anint value. Division is integral if its operands arecount and/orint .

+ and- can also be used as unary operators. If applied to acount type, they yield anint type.
%computes amodulus, defined in the same way as in the C language. It can only be applied tocount or int

types, and yieldscount if both operands arecount types, otherwiseint .
Binary+ and- have the lowest precedence,* , / , and%have equal and next highest precedence. The unary+ and

- operators have the same precedence as the! operator (§ 3.2.2, page 22). See§ 10.11, page 177, for a table of the
precedence of all Bro operators.

All arithmetic operators associate from left-to-right.

23

3.3.4 Comparison Operators

Bro provides the usual comparison operators:==, != , <, <=, >, and>=. They each take two operands, which they
convert to the higher of the two types (see§ 3.3.2, page 23). They return abool corresponding to the comparison of
the operands. For example,

3 < 3.000001

yields true.
The comparison operators are all non-associative and have equal precedence, just below that of thein operator

and just above that of the logical&&operator. See§ 10.11, page 177, for a general discussion of precedence.

3.4 Enumerations

Enumerations allow you to specify a set of related values that have no further structure, similar toenum types in C.
For example:

type color: enum { Red, White, Blue, };

defines the valuesRed, White , andBlue . A variable of typecolor holds one of these values. Note thatRed et al
haveglobal scope. You cannotdefine a variable or type with those names. (Also note that, asusual, the comma after
Blue is optional.)

The only operations allowed on enumerations are comparisons for equality. Unlike C enuemrations, they do not
have values or an ordering associated with them.

You can extend the set of values in an enumeration usingredef enum identifier += { name-list
}:

redef enum color += { Black, Yellow };

3.5 Strings

Thestring type holds character-string values, used to represent and manipulate text.

3.5.1 String Constants

You create string constants by enclosing text within double(") quotes. A backslash character (\) introduces anescape
sequence. The following ANSI C escape sequences are recognized:\a yields an alert (bell) character,\b yields
a backspace character,\f yields a formfeed character,\n yields a newline character,\r yields a carriage return
character,\t a tab character,\ octal-digits the 8-bit ASCII character with codeoctal-digits, and \x hex-digitsthe
8-bit ASCII character with codehex-digits. Bro string constants currentlycannotbe continued across multiple lines
by escaping newlines in the input. This may change in the future. Any other character following a\ is passed along
literally.

Unlike with C,strings are represented internally as a count and a vector ofbytes, rather than a NUL-terminated
series of bytes. This difference is important because NULs can easily be introduced into strings derived from network
traffic, either by the nature of the application, inadvertently, or maliciously by an attacker attempting to subvert the
monitor. An example of the latter is sending the following toan FTP server:

24

USER nice\0USER root

where “\0 ” represents a NUL. Depending on how it is written, the FTP application receiving this text might well
interpret it as two separate commands, “USER nice ” followed by “USER root ”. But if the monitoring program
uses NUL-terminated strings, then it will effectively see only “USER nice ” and have no opportunity to detect the
subversive action.

Note that Bro string constants are automatically NUL-terminated.
Note: While Bro itself allows NULs in strings, their presence in arguments to many Bro functions results in a

run-time error, as often their presence (or, conversely, lack of a NUL terminator) indicates some sort of problem
(particularly for arguments that will be passed to C functions). See§ 6.2.1, page 91 for discussion.

3.5.2 String Operators

Currently the only string operators provided are the comparison operators discussed in§ 3.3.4, page 24 and pattern-
matching as discussed in§ 3.6.2, page 26. These operators perform character by character comparisons based on the
native character set, usually ASCII.

Some functions for manipulating strings are also available. See§ 6.2.3, page 91.

3.6 Patterns

Thepattern type holds regular-expression patterns, which can be used for fast text searching operations.

3.6.1 Pattern Constants

You create pattern constants by enclosing text within forward slashes (/). The syntax is the same as for theflexversion
of the lex utility. For example,

/foo|bar/

specifies a pattern that matches either the text “foo” or the text “bar”;

/[a-zA-Z0-9]+/

matches one or more letters or digits, as will

/[[:alpha:][:digit:]]+/

or

/[[:alnum:]]+/

and the pattern

/ˆrewt.*login/

matches any string with the text “rewt” at the beginning of a line followed somewhere later in the line by the text
“login”.

You can create disjunctions (patterns the match any of a number of alternatives) both using the “| ” regular expres-
sion operator directly, as in the first example above, or by using it to join multiple patterns. So the first example above
could instead be written:

25

/foo/ | /bar/

This form is convenient when constructing large disjunctions because it’s easier to see what’s going on.
Note that the speed of the regular expression matching doesnot depend on the complexity or size of the patterns,

so you should feel free to make full use of the expressive power they afford.
You can assignpattern values to variables, hold them in tables, and so on. So for example you could have:

global address_filters: table[addr] of pattern = {
[128.3.4.4] = /failed login/ | /access denied/,
[128.3.5.1] = /access timeout/

};

and then could test, for example:

if (address_filters[cidorig_h] in msg)
skip_the_activity();

Note though that you cannot use create patterns dynamically. this form (or any other) to create dynamic

3.6.2 Pattern Operators

There are two types of pattern-matching operators:exactmatching andembeddedmatching.

Exact Pattern Matching

Exact matching tests for a string entirely matching a given pattern. You specify exact matching by using the== equality
relational with onepattern operand and onestring operand (order irrelevant). For example,

"foo" == /foo|bar/

yields true, while

/foo|bar/ == "foobar"

yields false. The!= operator is the negation of the== operator, just as when comparing strings or numerics.
Note that for exact matching, theˆ (anchor to beginning-of-line) and$ (anchor to end-of-line) regular expression

operators are redundant: since the match isexact, every pattern is implicitly anchored to the beginning and end of the
line.

Embedded Pattern Matching

Embedded matching tests whether a given pattern appears anywhere within a given string. You specify embedded
pattern matching using thein operator. It takes two operands, the first (which must appearon the left-hand side) of
typepattern , the second of typestring . For example,

/foo|bar/ in "foobar"

yields true, as does

/oob/ in "foobar"

26

but

/ˆoob/ in "foobar"

does not, since the text “oob” does not appear the beginning of the string “foobar”. Note, though, that the$ regular
expression operator (anchor to end-of-line) is not currently supported, so:

/oob$/ in "foobar"

currently yields true. This is likely to change in the future.
Finally, the!in operator yields the negation of thein operator.

3.7 Temporal Types

Bro supports types representingabsoluteandrelative times with thetime andinterval types, respectively.

3.7.1 Temporal Constants

There is currently no way to specify an absolute time as a constant (though see thecurrent time and
network time functions in§ 6.2.4, page 91). You can specifyinterval constants, however, by appending a
time unitafter a numeric constant. For example,

3.5 min

denotes 210 seconds. The different time units areusec , sec , min , hr , andday , representing microseconds, seconds,
minutes, hours, and days, respectively. The whitespace between the numeric constant and the unit is optional, and the
letter “s” may be added to pluralize the unit (this has no semantic effect). So the above example could also be written:

3.5mins

or

150 secs

3.7.2 Temporal Operators

You can apply arithmetic and relational operators to temporal values, as follows.

Temporal Negation

The unary- operator can be applied to aninterval value to yield anotherinterval value. For example,

- 12 hr

represents “twelve hours in the past.”

27

Temporal Addition

Adding two interval values yields anotherinterval value. For example,

5 sec + 2 min

yields 125 seconds. Adding atime value to aninterval yields anothertime value.

Temporal Subtraction

Subtracting atime value from anothertime value yields aninterval value, as does subtracting aninterval
value from anotherinterval , while subtracting aninterval from atime yields atime .

Temporal Multiplication

You can multiply aninterval value by anumericvalue to yield anotherinterval value. For example,

5 min * 6.5

yields 1,950 seconds.time values cannot be scaled by multiplication or division.

Temporal Division

You can also divide aninterval value by anumericvalue to yield anotherinterval value. For example,

5 min / 2

yields 150 seconds. Furthermore, you can divide oneinterval value by another to yield adouble . For example,

5 min / 30 sec

yields 10.

Temporal Relationals

You may compare twotime values or twointerval values for equality, and also for ordering, where times or
intervals further in the future are considered larger than times or intervals nearer in the future, or in the past.

3.8 Port Type

Theport type corresponds to a TCP or UDP port number. TCP and UDP portsare distinct. Thus, a value of type
port can hold either a TCP or a UDP port, but at any given time it is holding exactly one of these.

3.8.1 Port Constants

There are two forms ofport constants. The first consists of an unsigned integer followed by either “/tcp ” or
“ /udp .” So, for example, “80/tcp ” corresponds to TCP port 80 (the HTTP protocol used by the World Wide Web).
The second form of constant is specified using a predefined identifier, such as “http ”, equivalent to “80/tcp .” These
predefined identifiers are simplyconst variables defined in the Bro initialization file (§ 10.18, page 178), such as:

const http = 80/tcp;

28

3.8.2 Port Operators

The only operations that can be applied toport values are relationals. You may compare them for equality, and also
for ordering. For example,

20/tcp < telnet

yields true becausetelnet is a predefined constant set to23/tcp .
UDP ports are considered larger than TCP ports, i.e., “0/udp ” is larger than “65535/tcp ”.

3.9 Address Type

Another networking type provided by Bro isaddr , corresponding to an IP address. The only operations that can be
performed on them are comparisons for equality or inequality (also, a built-in function provides masking, as discussed
below).

When configuring the Bro distribution, if you specify--enable-brov6 then Bro will be built to support both
IPv4 and IPv6 addresses, and anaddr can hold either. Otherwise, addresses are restricted to IPv4.

3.9.1 Address Constants

Constants of typeaddr have the familiar “dotted quad” format,A 1.A 2.A 3.A 4, where theA i all lie between
0 and 255. If you have configured for IPv6 support as discussedabove, then you can also use the colon-separated
hexadecimal form described in [RFC2373].

Often more useful arehostnameconstants. There is no Bro type corresponding to Internet hostnames. Because
hostnames can correspond to multiple IP addresses, you quickly run into ambiguities if comparing one hostname with
another. Bro does, however, support hostnames as constants. Any series of two or more identifiers delimited by dots
forms a hostname constant, so, for example, “lbl.gov ” and “www.microsoft.com ” are both hostname constants
(the latter, as of this writing, corresponds to 5 distinct IPaddresses). The value of a hostname constant is alist of
addr containing one or more elements. These lists (as with the lists associated with certainport constants, discussed
above) cannot be used in Bro expressions; but they play a central role in initializing Brotable ’s andset ’s.

3.9.2 Address Operators

The only operations that can be applied toaddr values are comparisons for equality or inequality, using== and!= .
However, you can also operate onaddr values usingmask addr to mask off lower address bits, andto net to
convert anaddr to anet (see below).

3.10 Net Type

Related to theaddr type isnet . net values hold address prefixes. Historically, the IP address space was divided
into differentclassesof addresses, based on the uppermost components of a given address: class A spanned the range
0.0.0.0 to 127.255.255.255; class B from 128.0.0.0 to 191.255.255.255; class C from 192.0.0.0 to 223.255.255.255;
class D from 224.0.0.0 to 239.255.255.255; and class E from 240.0.0.0 to 255.255.255.255. Addresses were allocated
to different networks out of either class A, B, or C, in blocksof 2

24, 2
16, and2

8 addresses, respectively.

29

Accordingly,net values hold either an 8-bit class A prefix, a 16-bit class B prefix, a 24-bit class C prefix, or a
32-bit class D “prefix” (an entire address). Values for classE prefixes are not defined (because no such addresses are
currently allocated, and so shouldn’t appear in other than clearly-bogus packets).

Today, address allocations come not from class A, B or C, but instead fromCIDRblocks (CIDR = Classless Inter-
Domain Routing), which are prefixes between 1 and 32 bits longin the range 0.0.0.0 to 223.255.255.255.Deficiency:
Bro shoulddeal just with CIDR prefixes, rather than old-style network prefixes. However, these are more difficult to
implement efficiently for table searching and the like; hence currently Bro only supports the easier-to-implement old-
style prefixes. Since these don’t match current allocation policies, often they don’t really fit an address range you’ll
want to describe. But for sites with older allocations, theydo, which gives them some basic utility.

In addition,Deficiency: IPv6 has no notion of old-style network prefixes,only CIDR prefixes, so the lack of support
of CIDR prefixes impairs use of Bro to analyze IPv6 traffic.

3.10.1 Net Constants

You express constants of typenet in one of two forms, either:

N 1.N 2.

or

N 1.N 2.N 3

where theN i all lie between 0 and 255. The first of these corresponds to class B prefixes (note the trailing “. ” that’s
required to distinguish the constant from a floating-point number), and the second to class C prefixes.Deficiency:
There’s currently no way to specify a class A prefix.

3.10.2 Net Operators

The only operations that can be applied tonet values are comparisons for equality or inequality, using== and!= .

3.11 Records

A record is a collection of values. Each value has a name, referred to as one of the record’sfields, and a type. The
values do not need to have the same type, and there is no restriction on the allowed types (i.e., each field can beany
type).

3.11.1 Defining records

A definition of a record type has the following syntax:

record { field+ }

(that is, the keywordrecord followed by one-or-morefield’s enclosed in braces), where afield has the syntax:

identifier: type field-attributes∗ ; identifier : type field-attributes∗ ,

30

Each field has a name given by the identifier (which can be the same as the identifier of an existing variable or a
field in another record). Field names must follow the same syntax as that for Bro variable names (see§ 5, page 53),
namely they must begin with a letter or an underscore (“”) followed by zero or more letters, underscores, or digits.
Bro reserved words such asif or event cannot be used for field names. Field names are case-sensitive.

Each field holds a value of the given type. We discuss the optionalfield-attributesbelow. Finally, you can use either
a semicolon or a comma to terminate the definition of a record field.

For example, the following record type:

type conn_id: record {
orig_h: addr; # Address of originating host.
orig_p: port; # Port used by originator.
resp_h: addr; # Address of responding host.
resp_p: port; # Port used by responder.

};

is used throughout Bro scripts to denote a connection identifier by specifying the connections originating and re-
sponding addresses and ports. It has four fields:orig h andresp h of typeaddr , andorig p of resp p of type
port .

3.11.2 Record Constants

You can initialize values of typerecord using either assignment from another, already existingrecord value; or
element-by-element; or using arecord constructor.

In a Bro function or event handler, we could declare a local variable theconn id type given above:

local id: conn_id;

and then explicitly assign each of its fields:

id$orig_h = 207.46.138.11;
id$orig_p = 31337/tcp;
id$resp_h = 207.110.0.15;
id$resp_p = 22/tcp;

Deficiency: One danger with this initialization method is that if you forget to initialize a field, and then later access
it, you will crashBro.

Or we could use:

id = [$orig_h = 207.46.138.11, $orig_p = 31337/tcp,
$resp_h = 207.110.0.15, $resp_p = 22/tcp];

This second form is no different from assigning arecord value computed in some other fashion, such as the
value of another variable, a table element, or the value returned by a function call. Such assignments must specifyall
of the fields in the target (i.e., inid in this example), unless the missing field has the&optional or &default
attribute.

31

3.11.3 Accessing Fields Using “$”

You access and assign record fields using the “$” (dollar-sign) operator. As indicated in the example above, for the
recordid we can access itsorig h field using:

id$orig_h

which will yield theaddr value207.46.138.11 .

3.11.4 Record Assignment

You can assign one record value to another using simple assignment:

local a: conn_id;
...
local b: conn_id;
...
b = a;

Doing so produces ashallow copy. That is, after the assignment,b refers to the same record as doesa, and an
assignment to one ofb’s fields will alter the field ina’s value (and vice versa for an assignment to one ofa’s fields).
However, assigning again tob itself, or assigning toa itself, will break the connection.

Deficiency: Bro lacks a mechanism for specifying adeepcopy, in which no linkage is connected betweenb anda.
Consequently, you must be careful when assigning records toensure you account for the shallow-copy semantics.

You can also assign to a record another record that has fields with the same names and types, even if they come in
a different order. For example, if you have:

local b: conn_id;
local c: record {

resp_h: addr, orig_h: addr;
resp_p: port, orig_p: port;

};

then you can assign eitherb to c or vice versa.
You couldnot, however, make the assignment (in either direction) if you had:

local b: conn_id;
local c: record {

resp_h: addr, orig_h: addr;
resp_p: port, orig_p: port;
num_alerts: count;

};

because the fieldnum alerts would either be missing or excess.
However, when declaring a record you can associate attributes with the fields. The relevant ones are&optional ,

which indicates that when assigning to the record you can omit the field, and&default = expr, which indicates
that if the field is missing, then a reference to it returns thevalue of the expressionexpr. So if instead you had:

32

local b: conn_id;
local c: record {

resp_h: addr, orig_h: addr;
resp_p: port, orig_p: port;
num_alerts: count &optional;

};

then you could executec = b even thoughnum alerts is missing fromb. You still could not executeb = c ,
though, since in that direction,num alerts is an extra field (regardless of whether it has been assigned to or not—
the error is a type-checking error, not a run-time error).

The same holds for:

local b: conn_id;
local c: record {

resp_h: addr, orig_h: addr;
resp_p: port, orig_p: port;
num_alerts: count &default = 0;

};

I.e., you could executec = b but notb = c . The only difference between this example and the previous one is that
for the previous one, access toc$num alerts without having first assigned to it results in a run-time error, while in
the second, it yields0.

You can test for whether a record field exists using the?$ operator.
Finally, all of the rules for assigning records also apply when passing a record value as an argument in a function

call or an event handler invocation.

3.12 Tables

table ’s provideassociative arrays: mappings from one set of values to another. The values beingmapped are termed
the index(or indices, if they come in groups of more than one) and the results of themapping theyield.

Tables are quite powerful, and indexing them is very efficient, boiling down to a single hash table lookup. So you
should take advantage of them whenever appropriate.

3.12.1 Declaring Tables

You declare tables using the following syntax:

table [type+] of type

wheretype+ is one or more types, separated by commas.
The indices can be of the followingscalar types:numeric, temporal, enumerations, string , port , addr , or

net . The yield can be of any type. So, for example:

global a: table[count] of string;

declaresa to be a table indexed by acount value and yielding astring value, similar to a regular array in a
language like C. The yield type can also be more complex:

33

global a: table[count] of table[addr, port] of conn_id;

declaresa to be a table indexed bycount and yielding another table, which itself is indexed by anaddr and aport
to yield aconn id record.

This second example illustrates amulti-dimensionaltable, one indexed not by a single value but by atuple of
values.

3.12.2 Initializing Tables

You initialize tables by enclosing a set of initializers within braces. Each initializer looks like:

[expr-list] = expr

whereexpr-list is a comma-separated list of expressions corresponding to an index of the table (so, for a table indexed
by count , for example, this would be a single expression of typecount) andexpr is the yield value to assign to that
index.

For example,

global a: table[count] of string = {
[11] = "eleven",
[5] = "five",

};

initializes the tablea to have two elements, one indexed by11 and yielding the string"eleven" and the other
indexed by5 and yielding the string"five" . (Note the comma after the last list element; it is optional,similar to
how C allows final commas in declarations.)

You can also group together a set of indices together to initialize them to the same value:

type HostType: enum { DeskTop, Server, Router };
global a: table[addr] of HostType = {

[[155.26.27.2, 155.26.27.8, 155.26.27.44]] = Server,
};

is equivalent to:

type HostType: enum { DeskTop, Server, Router };
global a: table[addr] of HostType = {

[155.26.27.2] = Server,
[155.26.27.8] = Server,
[155.26.27.44] = Server,

};

This mechanism also applies tohostnames, which can be used in table initializations for any indices of type addr .
For example, ifwww.my-server.com corresponded to the addresses 155.26.27.2 and 155.26.27.44, then the above
could be written:

global a: table[addr] of HostType = {
[[www.my-server.com, 155.26.27.8]] = Server,

};

34

and if it corresponded to all there, then:

global a: table[addr] of HostType = {
[www.my-server.com] = Server,

};

You can also use multiple index groupings across different indices:

global access_allowed: table[addr, port] of bool = {
[www.my-server.com, [21/tcp, 80/tcp]] = T,

};

is equivalent to:

global access_allowed: table[addr, port] of bool = {
[155.26.27.2, 21/tcp] = T,
[155.26.27.2, 80/tcp] = T,
[155.26.27.8, 21/tcp] = T,
[155.26.27.8, 80/tcp] = T,
[155.26.27.44, 21/tcp] = T,
[155.26.27.44, 80/tcp] = T,

};

Fix me: add example of cross-product initialization of sets

3.12.3 Table Attributes

When declaring a table, you can specify a number of attributes that affect its operation:

&default
Specifies a value to yield when an index does not appear in the table. Syntax:

&default = expr

expr can have one of two forms. If it’s type is the same as the table’s yield type, thenexpr is evaluated and
returned. If it’s type is afunction with arguments whose types correspond left-to-right with the index types
of the table, and which returns a type the same as the yield type, then that function is called with the indices that
yielded the missing value to compute the default value.

For example:

global a: table[count] of string &default = "nothing specia l";

will return the string"nothing special" anytimea is indexed with acount value that does not appear
in a.

A more dynamic example:

35

function nothing_special(): string
{
if (panic_mode)

return "look out!";
else

return "nothing special";
}

global a: table[count] of string &default = nothing_specia l;

An example of using a function that computes using the index:

function make_pretty(c: count): string
{
return fmt("**%d**", c);
}

global a: table[count] of string &default = make_pretty;

&create expire
Specifies that elements in the table should beautomatically deletedafter a given amount of time has elapsed
since they were first entered into the table. Syntax:

&create expire = expr

whereexpr is of typeinterval .

&read expire
The same as&create expire except the element is deleted when the given amount of time has lapsed since
the last time the element was accessed from the table.

&write expire
The same as&create expire except the element is deleted when the given amount of time has lapsed since
the last time the element was entered or modified in the table.

&expire func
Specifies a function to call when an element is due for expression because of&create expire ,
&read expire , or &write expire . Syntax:

&expire func = expr

expr must be a function that takes two arguments: the first one is a table with the same index and yield types
as the associated table. The second one is of typeany and corresponds to the index(es) of the element being
expired. The function must return aninterval value. Theinterval indicates for how much longer the
element should remain in the table; returning0 secs or a negative value instructs Bro to go ahead and delete
the element.

Deficiency: The use of anany type here istemporaryand will be changing in the future to a generaltuple
notion.

36

You specify multiple attributes by listing one after the other,withoutcommas between them:

global a: table[count] of string &default="foo" &write_ex pire=5sec;

Note that you can specify each type of attribute only once. You can, however, specify more than one of
&create expire , &read expire , and &write expire . In that case, whenever any of the corresponding
timers expires, the element will be deleted.

3.12.4 Accessing Tables

As usual, you access the values in tables by indexing them with a value (for a single index) or list of values (multiple
indices) enclosed in[] ’s. Deficiency: Presently, when indexing a multi-dimensional table you must provideall of the
relevant indices; you can’t leave one out in order to extracta sub-table.

You can also index arrays usingrecord ’s, providing the record is comprised of values whose types match that
of the table’s indices. (Any record fields whose types are themselves records are recursively unpacked to effect this
matching.) For example, if we have:

local b: table[addr, port] of conn_id;
local c = 131.243.1.10;
local d = 80/tcp;

then we could indexb usingb[c, d] , but if we had:

local e = [$field1 = c, $field2 = d];

we could also index it usinga[d]
You can test whether a table holds a given index using thein operator. For example:

[131.243.1.10, 80/tcp] in b

or

e in b

per the examples above. In addition, if the table has only a single index (not multi-dimensional), then you can omit the
[] ’s:

local active_connections: table[addr] of conn_id;
...
if (131.243.1.10 in active_connections)

...

3.12.5 Table Assignment

An indexed can be the target of an assignment:

b[131.243.1.10, 80/tcp] = c$id;

You can also assign to an entire table. For example, suppose we have the global:

global active_conn_count: table[addr, port] of count;

37

then we could later clear the contents of the table using:

local empty_table: table[addr, port] of count;
active_conn_count = empty_table;

Here the first statement declares a local variableempty table with the same type asactive conn count . Since
we don’t initialize the table, it starts out empty. Assigning it to active conn count then replaces the value of
active conn count with an empty table.Note: As withrecord ’s, assigningtable values results in ashallow
copy.

In addition to directly accessing an element of a table by specifying its index, you can also loop over all of the
indices in a table using thefor statement.

3.12.6 Deleting Table Elements

You can remove an individual element from a table using thedelete statement:

delete active_host[c$id];

will remove the element inactive host corresponding to the connection identifierc$id (which is aconn id
record). If the element isn’t present, nothing happens.

3.13 Sets

Sets are very similar to tables. The principle difference isthat they are simply a collection of indices; they don’t yield
any values. You declare tables using the following syntax:

set [type+]

where, as withtable s, type+ is one or more scalar types (or records), separated by commas.
You initialize sets listing their elements in braces:

global a = { 21/tcp, 23/tcp, 80/tcp, 443/tcp };

which implicitly typesa as aset[port] and then initializes it to contain the given 4port values.
For multiple indices, you enclose each set of indices in brackets:

global b = { [21/tcp, "ftp"], [23/tcp, "telnet"], };

which implicitly b asset[port, string] and then initializes it to contain the given two elements. (As with
tables, the comma after the last element is optional.)

As with tables, you can group together sets of indices:

global c = { [21/tcp, "ftp"], [[80/tcp, 8000/tcp, 8080/tcp] , "http"], };

initializesc to contain 4 elements.
Also as with tables, you can use the&create expire , &read expire , and&write expire attributes to

control the automatic expiration of elements in a set.Deficiency: However, the&expire func attribute is not
currently supported.

You can test for whether a particular member is in a set using the in operator, as with tables. You add elements
using theadd statement:

38

add c[443/tcp, "https"];

and can remove them using thedelete statement:

add d[21/tcp, "ftp"];

Also, as with tables, you can assign to the entire set, which assigns ashallowcopy.
Finally, as with tables, you can loop over all of the indices in a set using thefor statement.

3.14 Files

Deficiency: Bro currently supports only a very simple notionof files. You can only write to files, you can’t read from
them: and files are essentially untyped—the only values you can write to them arestring ’s or values that can be
converted tostring .

You declarefile variables simply as typefile :

global f: file;

You can create values of typefile by using theopen function:

f = open("suspicious_info.log");

will create (or recreate, if it already exists) the filesuspiciousinfo.log and open it for writing. You can also use
open for append to append to an existing file (or create a new one, if it doesn’texist).

You write to files using theprint statement:

print f, 5 * 6;

will print the text30 to the file corresponding to the value off .
There is no restriction regarding how many files you can have open at a given time. In particular, even if your

system has a limit imposed byRLIMIT NOFILEs set by the system callsetrlimit . If, however, you want to to
close a file, you can do so usingclose , and you can test whether a file is open usingactive file .

Finally, you can control whether a file is buffered usingset buf , and can flush the buffers of all open files using
flush all .

3.15 Functions

You declare a Brofunction type using:

function (argument∗) [: type]

whereargument+ is a (possibly empty) comma-separated list of arguments, and the final “: type” declares the return
type of the function. It is optional; if missing, then the function does not return a value.

Each argument is declared using:

param-name: type

So, for example:

function(a: addr, p: port): string

39

corresponds to a function that takes two parameters,a of typeaddr andp of typeport , and returns a value of type
string .

You could furthermore declare:

global generate_id: function(a: addr, p: port): string;

to definegenerate id as a variable of this type. Note that the declaration doesnot define the body of the function,
and, indeed,generate id could have different function bodies at different times, byassigning different function
values to it.

When defining a function including its body, the syntax is slightly different:

function func-name(argument∗) [: type] { statement∗ }

That is, you introducefunc-name, the name of the function, between the keyworkfunction and the opening paren-
thesis of the argument list, and you list the statements of the function within braces at the end.

For the previous example, we could define its body using:

function generate_id(a: addr, p: port): string
{
if (a in local_servers)

Ignore port, they’re always the same.
return fmt("server %s", a);

if (p < 1024/tcp)
Privileged port, flag it.
return fmt("%s/priv-%s", a, p);

Nothing special - default formatting.
return fmt("%s/%s", a, p);
}

We also could have omitted the first definition; a function definition like the one immediately above automatically
definesgenerate id as a function of typefunction(a: addr, p: port): string . Note though that
if func-namewas indeed already declared, then the argument list much match exactlythat of the previous definition.
This includes the names of the arguments;Unlike with C,you cannot change the argument names between their first
(forward) definition and the full definition of the function.

You can also define functions without using any name. These are referred to as anonymous functions, and are a
type of expression.

You can only do two things with functions: call them or assignthem. As an example of the latter, suppose we have:

local id_funcs: table[conn_id] of function(p: port, a: add r): string;

would declare a local variable indexed by aconn id record value to yield a function of the same type as in the
previous example. You could then execute:

id_funcs[c$id] = generate_id

or call whatever function is associated with a givenconn id :

print fmt("id is: %s", id_funcs[c$id](80/tcp, 1.2.3.4));

40

3.16 Event handlers

Event handlers are nearly identical in both syntax and semantics to functions, with the two differences being that event
handlers have no return type since they never return a value,and you cannot call an event handler. You declare an event
handler using:

event (argument∗)

So, or example,

local eh: event(attack_source: addr, severity: count)

declares the local variableeh to have a type corresponding to an event handler that takes two arguments,
attack source of typeaddr , andseverity of typecount .

To declare an event handler along with its body, the syntax is:

event handler(argument∗) { statement∗ }

As with functions, you can assign event handlers to variables of the same type. Instead of calling event handlers
like functions, though, instead they areinvoked. This can happen in one of three ways:

From the event engineWhen the event engine detects an event for which you have defined a corresponding event
handler, it queues an event for that handler. The handler is invoked as soon as the event engine finishes processing
the current packet (and invoking any other event handlers that were queued first). The various event handlers
known to the event engine are discussed in Chapter§ 7, page 92.

Via the event statement Theevent statement queues an event for the given event handler for immediate process-
ing. For example:

event password_exposed(c, user, password);

queues an inovocation of the event handlerpassword exposed with the argumentsc , user , and
password . Note thatpassword exposed must have been previously declared as an event handler with
a compatible set of arguments.

Or, if we had a local variableeh as defined above, we could execute:

event eh(src, how_severe);

if src is of typeaddr andhow severe of typecount .

Via the schedule expression Theschedule xpression queues an event for future invocation. For example:

schedule 5 secs { password_exposed(c, user, password) };

would causepassword exposed to be invoked 5 seconds in the future.

41

3.17 Theany type

Theany type is a type used internally by Bro to bypass strong typing.For example, thefmt function takes arguments
of type any , because its arguments can be of different types, and of variable length. However, theany type is not
supported for use by the user; while Bro lets you declare variables of typeany , it does not allow assignment to them.
This may change in the future. Note, though, that you can achieve some of the same effect usingrecord values with
&optional fields.

42

Chapter 4

Statements and Expressions

You express Bro’s analysis of network traffic usingevent handlers, which, as discussed in§ 3.16, page 41, are essen-
tially subroutines written in Bro’s policy scripting language. In this chapter we discuss the different types of statements
and expressions available for expressing event handlers and the auxiliary functions they use.

4.1 Statements

Bro functions and event handlers are written in an imperative style, and the statements available for doing so are
similar to those provided in C. As in C, statements are terminated with a semi-colon. There are no restrictions on how
many lines a statement can span. Whitespace can appear between any of the syntatic components in a statement, and
its presence always serves as a separator (that is, a single syntactic component cannot in general contain embedded
whitespace, unless it is escaped in some form, such as appearing inside a string literal).

Bro provides the following types of statements:

expression
Syntax:

expr ;

As in C, an expression by itself can also be used as a statement. For example, assignments, calling functions,
and scheduling timers are all expressions; they also are often used as statements.

print
Syntax:

print [file] expr-list ;

The expressions are converted to a list of strings, which arethen printed as a comma-separated list. If the first
expression is of typefile , then the other expressions are printed to the corresponding file; otherwise they’re
written tostdout.

For control over how the strings are formatted, seefmt function.

log
Syntax:

43

log expr-list ;

The expressions are converted to a list of strings, which arethen logged as a comma-separated list. “Logging”
means recording the values tobro log file . In addition, if Bro is readinglive network traffic (as opposed to
from a trace file), then the messages are also reported viasyslog(3)at levelLOGNOTICE. If the message does
not already include a timestamp, one is added.

See thelog module for a discussion of controlling logging behavior from your policy script. In particular, an
important feature of thelog statement is that prior to logging the giving string(s), Brofirst invokeslog hook
to determine whether to suppress the logging.

event
Syntax:

event expr (expr-list∗) ;

Evaluatesexprto obtain an event handler and queues an event for it with the value corresponding to the optional
comma-separated list of values given byexpr-list.

Note: event statements look syntactically just like function calls, other than the keyword “event ”. However,
function calls are expressions, while queueing an event is not, since it does not return a value.

if
Syntax:

if (expr) stmt
if (expr) stmt else stmt2

Evaluatesexpr, which must yield abool value. If true, executesstmt. For the second form, if false, executes
stmt2.

for
Syntax:

for (var in expr) stmt

Iterates over the indices ofexpr, which must evaluate to either aset or a table . For each iteration,var is set
to one of the indices andstmt is executed.var needn’t have been previously declared (in which case its type is
implicitly inferred from that of the indices ofexpr), and must not be a global variable.

If expr is aset , then the indices correspond to the members of the set. Ifexpr is atable , then they correspond
to the indices of the table.

Deficiency: You can only usefor statements to iterate over sets and tables with a single, non-compound index
type. You can’t iterate over multi-dimensional or compoundindices.

Deficiency: Bro lacks ways of controlling the order in which it iterates over the indices.

next
Syntax:

next ;

44

Only valid within afor statement. When executed, causes the loop to proceed to the next iteration value (i.e.,
the next index value).

break
Syntax:

break ;

Only valid within afor statement. When executed, causes the loop to immediately exit.

return
Syntax:

return [expr] ;

Immediately exits the current function or event handler. For a function, returns the valueexpr(which is omitted
if the function does not return a value, or for event handlers).

add
Syntax:

add expr1 [expr2] ;

Adds the element specified byexpr2 to theset given byexpr1. For example,

global active_hosts: set[addr, port];
...
add active_hosts[1.44.33.7, 80/tcp];

addes an element corresponding to the pair1.44.33.7 and80/tcp to the setactive hosts .

delete
Syntax:

delete expr1 [expr2] ;

Deletes the corresponding value, whereexpr1 corresponds to a set or table, andexpr2 an element/index of the
set/table. If the element is not in the set/table, does nothing.

compound
Compound statements are formed from a list of (zero or more) statements enclosed in{} ’s:

{ statement∗ }

null
A lone:

;

denotes an empty, do-nothing statement.

45

local , const
Syntax:

local var [: type] [= initialization] [attributes] ;
const var [: type] [= initialization] [attributes] ;

Declares a local variable with the given type, initialization, and attributes, all of which are optional. The syntax
of these fields is the same as for global variable declarations. The second form likewise declares a local variable,
but one which isconstant: trying to assign a new value to it results in an error.Deficiency: Currently, this
const restriction isn’t detected/enforce.

Unlike with C, the scope of a local variable is from the point of declarationto the end of the encompassing
function or event handler.

4.2 Expressions

Expressions in Bro are very similar to those in C, with similar precedence:

parenthesized
Syntax:

(expr)

Parentheses are used as usual to override precedence.

constant
Any constant value (§ 3, page 21) is an expression.

variable
The name of avariablevariables is an expression.

increment, decrement
Syntax:

++ expr
-- expr

Increments or decrements the given expression, which must correspond to an assignable value (variable, table
element, or record element) and of a number type.

Yields the value of the expression after the increment.

Unlike with C, these operators only are defined for “pre”-increment/decrement; there is no post-
increment/decrement.

negation
Syntax:

! expr
- expr

46

Yields the boolean§ 3.2.2, page 22 or arithmetic negation for values of boolean or numeric(or interval)
types, respectively.

positivation
Syntax:

+ expr

Yields the value ofexpr, which must be of typenumericor interval .

The point of this operator is to explicitly convert a value oftypecount to int . For example, suppose you want
to declare a local variablecode to be of typeint , but initialized to the value2. If you used:

local code = 2;

then Bro’s implicit typing would make it of typecount , because that’s the type of a constant specified by a
string of digits. You could instead use:

local code = +2;

to direct the type inferencing to instead assign a type ofint to code . Or, of course, you could specify the type
explicitly:

local code:int = 2;

arithmetic
Syntax:

expr1 + expr2

expr1 - expr2

expr1 * expr2

expr1 / expr2

expr1 % expr2

The usual C arithmetic operators, defined for numeric types,except modulus (%) is only defined for integral
types.

logical
Syntax:

expr1 && expr2

expr1 || expr2

The usual C logical operators, defined for boolean types.

equality
Syntax:

expr1 == expr2

expr1 "!= expr2

47

Compares two values for equality or inequality, yielding abool value. Defined for all non-compound types
exceptpattern .

relational
Syntax:

expr1 < expr2

expr1 <= expr2

expr1 > expr2

expr1 >= expr2

Compares two values for magnitude ordering, yielding abool value. Defined for values of typenumeric, time ,
interval , port , or addr .

Note: TCPport values are considered less than UDPport values.

Note: IPv4addr values less than IPv6addr values.

Deficiency: Should also be defined at forstring values.

conditional
Syntax:

expr1 ? expr2 : expr3

Evaluatesexpr1 and, if true, evaluates and yieldsexpr2, otherwise evaluates and yieldsexpr3. expr2 andexpr3
must have compatible types.

assignment
Syntax:

expr1 = expr2

Assigns the value ofexpr2 to the storage defined byexpr1, which must be an assignable value (variable, table
element, or record element). Yields the assigned value.

function call
Syntax:

expr1 (expr-list2)

Evaluatesexpr1 to obtain a value of typefunction , which is then invoked with its arguments bound left-to-
right to the values obtained from the comma-separated list of expressionsexpr-list2. Each element ofexpr-list2
must be assignment-compatible with the corresponding formal argument in the type ofexpr1. The list may (and
must) be empty if the function does not take any parameters.

anonymous function
Syntax:

function (parameters) body

48

Defines ananonymous function, which, in abstract terms, is how you specify a constant of type function .
parametershas the syntax of parameter declarations for regular function definitions, as doesbody, which is just
a list of statements enclosed in braces.

Anonymous functions can be used anywhere you’d usually instead use a function declared in the usual direct
fashion. For example, consider the function:

function demo(msg: string): bool
{
if (msg == "do the demo")

{
print "got it";
return T;
}

else
return F;

}

You could instead declaredemo as a global variable of type function:

global demo: function(msg: string): bool;

and then later assign to it an anonymous function:

demo = function (msg: string): bool
{
if (msg == "do the demo")

{
print "got it";
return T;
}

else
return F;

};

You can even call the anonymous function directly:

(function (msg: string): bool
{
if (msg == "do the demo")

{
print "got it";
return T;
}

else
return F;

})("do the demo")

49

though to do so you need to enclose the function in parentheses to avoid confusing Bro’s parser.

One particularly handy form of anonymous function is that used for&default .

event scheduling
Syntax:

schedule expr1 { expr2 (expr-list3) }

Evaluatesexpr1 to obtain a value of typeinterval , and schedules the event given byexpr2 with parameters
expr-list3 for that time. Note that the expressions are all evaluated and bound at the time of execution of the
schedule expression; evaluation isnot deferred until the future execution of the event handler.

For example, we could define the following event handler:

event once_in_a_blue_moon(moon_phase: interval)
{
print fmt("wow, a blue moon - phase %s", moon_phase);
}

and then we could schedule delivery of the event for 6 hours from the present, with amoon phase of 12 days,
using:

schedule +6 hr { once_in_a_blue_moon(12 days) };

Note: The syntax is admittedly a bit clunky. In particular, it’s easy to(i) forget to include the braces (which are
needed to avoid confusing Bro’s parser),(ii) forget the final semi-colon if theschedule expression is being
used as an expression-statement, or(iii) erroneously place a semi-colon after the event specification but before
the closing brace.

Timer invocation is inexact. In general, Bro uses arriving packets to serve as its clock (when reading a trace
file off-line, this is still the case—the timestamp of the latest packet read from the trace is used as the notion
of “now”). Once this clock reaches or passes the time associated with a queued event, Bro will invoke the
event handler, which is termed “expiring” the timer. (However, Bro will only invokemax timer expires
timers per packet, and these include its own internal timersfor managing connection state, so this can also delay
invocation.)

It will also expire all pending timers (whose time has not yetarrived) when Bro terminates; if you don’t want
those event handlers to activate in this instance, you need to testdone with network .

You would think thatschedule should just be a statement likeevent invocation is, rather than an expression.
But it actually does return a value, of the undocumented typetimer . In the future, Bro may provide mechanisms
for manipulating such timers; for example, to cancel them ifyou no longer want them to expire.

index
Syntax:

expr1 [expr-list2]

50

Returns the sub-value ofexpr1 indexed by the value ofexpr-list2, which must be compatible with the index type
of expr1.

expr-list2 is a comma-separated list of expressions (with at least one expression listed) whose values are matched
left-to-right against the index types ofexpr1.

The only type of value that can be indexed in this fashion is atable . Note:set ’s cannot be indexed because
they do not yield any value. Usein to test for set membership.

membership
Syntax:

expr1 in expr2

expr1 !in expr2

Yields true (false, respectively) if the indexexpr1 is present in thetable or set expr2.

For example, ifalert level is a table index by an address and yielding a count:

global alert_level: table[addr] of count;

then we could test whether the address127.0.0.1 is present using:

127.0.0.1 in alert_level

For table ’s andset ’s indexed by multiple dimensions, you encloseexpr1 in brackets. For example, if we
have:

global connection_seen: set[addr, addr];

then we could test for the presence of the element indexed by8.1.14.2 and129.186.0.77 using:

[8.1.14.2, 129.186.0.77] in connection_seen

We can also instead use a correspondingrecord type. If we had

local t = [$x = 8.1.14.2, $y = 129.186.0.77]

then we could test:

t in connection_seen

pattern matching
Syntax:

expr1 == expr2

expr1 "!= expr2

expr1 in expr2

expr1 "!in expr2

51

As discussed for pattern values, the first two forms yield true (false) if thepattern expr1 exactly matches the
string expr2. (You can also list thestring value on the left-hand side of the operator and thepattern on
the right.)

The second two forms yield true (false) if thepattern expr1 is present within thestring expr2. (For these,
youmustlist the pattern as the left-hand operand.)

record field access
Syntax:

expr $ field-name

Returns the given fieldfield-nameof the recordexpr. If the record does not contain the given field, a compile-
time error results.

record constructor
Syntax:

[field-constructor-list]

Constructs arecord value. Thefield-constructor-listis a comma-separated list of individual field constructors,
which have the syntax:

$ field-name = expr

For example,

[$foo = 3, $bar = 23/tcp]

yields arecord with two fields,foo of typecount andbar of typeport . The values used in the constructor
needn’t be constants, however; they can be any expression ofan assignable type.

record field test
Syntax:

expr ?$ field-name

Returns true if the given field has been set in the record yielded byexpr. Note thatfield-name mustcorrespond
to one of the fields in the record type ofexpr (otherwise, the expression would always be false). The point of
this operator is to test whether an&optional field of a record has been assigned to.

For example, suppose we have:

type rap_sheet: record {
num_scans: count &optional;
first_activity: time;

};
global the_goods: table[addr] of rap_sheet;

and we want to test whether the address held in the variableperp exists inthe goods and, if so, whether
num scans has been assigned to, then we could use:

perp in the_goods && the_goods[perp]?$num_scans

52

Chapter 5

Global and Local Variables

5.1 Overview

Bro variables can be complicated to understand because theyhave a number of possibilities and features. They can be
global or local in scope; modifiable or constant (unchangeable); explicitly or implicitly typed; optionally initialized;
defined to have additionalattributes; and, for global variables,redefinedto have a different initialization or different
attributes from their first declaration.

Rather than giving the full syntax for variable declarations, which is messy, in the following sections we discuss
each of these facets of variables in turn, illustrating themwith the minimal necessary syntax. However, keep in mind
that the features can be combined as needed in a variable declaration.

5.1.1 Scope

global local Globalvariables are available throughout your policy script (once declared), while the scope oflocal
variables is confined to the function or event handler in which they’re declared. You indicate the variable’s type using
a corresponding keyword:

global name: type;

or

local name: type;

which declaresnameto have the given type and the corresponding scope.
You can intermix function/event handler definitions with declarations of global variables, and, indeed, they’re in

fact the same thing (that is, a function or event handler definition is equivalent to defining a global variable of type
function or event and associating its initial value with that of the function or event handler). So the following is
fine:

global a: count;

function b(p: port): string
{
if (p < 1024/tcp)

53

return "privileged";
else

return "ephemeral";
}

global c: addr;

However, you cannot mix declarations of global variables with global statements; the following is not allowed:

print "hello, world";
global a: count;

Local variables, on the other hand, canonly be declared within a function or event handler. (Unlike for global
statements, these declarationscancome after statements.) Their scope persists to the end of the function. For example:

function b(p: port): string
{
if (p < 1024/tcp)

local port_type = "privileged";
else

port_type = "ephemeral";

return port_type;
}

5.1.2 Modifiability

const For both global and local variables, you can declare that thevariablecannot be modifiedby declaring it using
theconst keyword rather thanglobal or local :

const response_script = "./scripts/nuke-em";

Note thatconst variablesmustbe initialized (otherwise, of course, there’s no way for them to ever hold a useful
value).

The utility of marking a variable as unmodifiable is for clarity in expressing your script—making it explicit that a
particular value will never change—and also allows Bro to possibly optimize accesses to the variable (though it does
little of this currently).

Note thatconst variablescanbe redefined viaredef .

5.1.3 Typing

When you define a variable, you canexplicitly type it by specifying its type after a colon. For example,

global a: count;

directly indicates thata’s type iscount .
However, Bro can alsoimplicitly type the variable by looking at the type of the expression youuse to initialize the

variable:

54

global a = 5;

also declaresa’s type to becount , since that’s the type of the initialization expression (the constant5). There is no
difference between this declaration and:

global a: count = 5;

except that it is more concise both to write and to read. In particular, Bro remainsstronglytyped, even though it also
supportsimplicit typing; the key is that once the type is implicitly inferred,it is thereafter strongly enforced.

Bro’s type inferenceis fairly powerful: it can generally figure out the type whatever initialization expression you
use. For example, it correctly infers that:

global c = { [21/tcp, "ftp"], [[80/tcp, 8000/tcp, 8080/tcp] , "http"], };

specifies thatc ’s type isset[port, string] . But for still more complicated expressions, it is not always able to
infer the correct type. When this occurs, you need to explicitly specify the type.

5.1.4 Initialization

When defining a variable, you can optionally specify an initial value for the variable:

global a = 5;

indicates that the initial value ofa is the value5 (and also implicitly typesa as typecount , per§ 5.1.3, page 54).
The syntax of an initialization is “= expression”, where the given expression must be assignment-compatible with

the variable’s type (if explicitly given). Tables and sets also have special initializer forms, which are discussed in
§ 3.12.2, page 34 and§ 3.13, page 38.

5.1.5 Attributes

When defining a variable, you can optionally specify a set ofattributesassociated with the variable, which specify
additional properties associated with it. Attributes havetwo forms:

& attr

for attributes that are specified simply using their name, and

& attr = expr

for attributes that have a value associated with them.
The attributes&redef &add func and&delete func , pertain to redefining variables; they are discussed in

§ 5.1.6, page 56.
The attributes&default , &create expire , &read expire , &write expire , and&expire func are

for use withtable ’s andset ’s. See§ 3.12.3, page 35 for discussion.
The attribute&optional specifies that arecord field is optional. See§ 3.11.4, page 32 for discussion.
Finall, to specify multiple attributes, you donot separate them with commas (doing so would actually make Bro’s

grammar ambiguous), but just list them one after another. For example:

global a: table[port] of string &redef &default="missing" ;

55

5.1.6 Refinement

To do.
&redef
&add func
&delete func

56

Chapter 6

Predefined Variables and Functions

6.1 Predefined Variables

Bro predefines and responds to the following variables, organized by the policy file in which they are contained. Note
that you will only be able to access the variables in a policy file if you @load it or a policy file which@load s it.

6.1.1 active.bro

active conn : table[conn id] of connection
A table ofconnection records corresponding to all active connections.

6.1.2 alert.bro

alert action filters : table[Alert] of function(a: alert info): AlertAction
A table that maps eachAlert into a function that should be called to determine the action.

alert file : file
The file into which alerts are written.

6.1.3 anon.bro

anon log : file
The file into which anonymizationFix me: Add a reference to doc on anonymization when it is available. IP

address mappings are written.

preserved subnet : set[subnet]
Addresses in these subnet are preserved when anonymizationis being performed. See alsopreserved net .
NOTE: This variable isconst , so may only be changed viaredef .

preserved net : set[net]
These Class A/B/C nets are preserved when anonymization is being performed. See also

preserved subnet .

57

6.1.4 backdoor.bro

backdoor log : file
The file into which alerts about backdoor servers (backdoor) are written.

backdoor min num lines : count
The number of lines ofFix me: must be telnet?input and output must be more than this amount to trigger

backdoor checking.
NOTE: This variable isconst , so may only be changed viaredef .

backdoor min normal line ratio : double
If the fraction of “normal” (less than a certain length) lines is below this value, then backdoor checking is not
performed.
NOTE: This variable isconst , so may only be changed viaredef .

backdoor min bytes : count
The total number of bytes transferred on the connection mustbe at least this large in order for backdoor checking
to be performed.
NOTE: This variable isconst , so may only be changed viaredef .

backdoor min 7bit ascii ratio : double
The fraction of 7-bit ASCII characters out of all bytes transferred must be at least this large in order for backdoor
checking to be performed.
NOTE: This variable isconst , so may only be changed viaredef .

backdoor demux disabled : bool
If T (the default), then suspected backdoor connections arenot demuxed into sender and receiver streams.
NOTE: This variable isconst , so may only be changed viaredef .

backdoor demux skip tags : set[string]
If the type of backdoor (the tag) is in this set, the connection will not be demuxed.
NOTE: This variable isconst , so may only be changed viaredef .

backdoor ignore src addrs : table[string, addr] of bool
If the suspected backdoor name (“*” for any) and source address (or its /16 or /24) subnet are in this table as a
pair, then the backdoor will not be logged.
NOTE: This variable isconst , so may only be changed viaredef .

backdoor ignore dst addrs : table[string, addr] of bool
If the suspected backdoor name (“*” for any) and destinationaddress (or its /16 or /24) subnet are in this table
as a pair, then the backdoor will not be logged.
NOTE: This variable isconst , so may only be changed viaredef .

backdoor ignore ports : table[string, port] of bool
The following (signature, well-known port) paits should not generated a backdoor alert.
NOTE: This variable isconst , so may only be changed viaredef .

backdoor standard ports : set[port]
Seebackdoor annotate standard ports .
NOTE: This variable isconst , so may only be changed viaredef .

58

backdoor stat period : interval
A report on backdoor stats is generated at this interval.
NOTE: This variable isconst , so may only be changed viaredef .

backdoor stat backoff : interval
Fix me: Not sure about the exact definition here The backdoor report interval (backdoor stat period) is
increased by this factor each time it is generated [, except if the timers are artificially expired].
NOTE: This variable isconst , so may only be changed viaredef .

backdoor annotate standard ports : bool
If T (the default), backdoors alerts for those onbackdoor standard ports should be annotated with the
backdoor tag name.
NOTE: This variable isconst , so may only be changed viaredef .

ssh sig disabled : bool
If T (default = F), then matches against the SSH signature areignored.
NOTE: This variable isconst , so may only be changed viaredef .

telnet sig disabled : bool
If T (default = F), then matches against the telnet signatureare ignored.
NOTE: This variable isconst , so may only be changed viaredef .

telnet sig 3byte disabled : bool
If T (default = F), then matches against the 3-byte telnet signature are ignored.
NOTE: This variable isconst , so may only be changed viaredef .

rlogin sig disabled : bool
If T (default = F), then matches against the rlogin signatureare ignored.
NOTE: This variable isconst , so may only be changed viaredef .

rlogin sig 1byte disabled : bool
If T (default = F), then matches against the 1-byte rlogin signature are ignored.
NOTE: This variable isconst , so may only be changed viaredef .

root backdoor sig disabled : bool
If T (default = F), then matches against the root backdoor signature are ignored.
NOTE: This variable isconst , so may only be changed viaredef .

ftp sig disabled : bool
If T (default = F), then matches against the FTP signature areignored.
NOTE: This variable isconst , so may only be changed viaredef .

napster sig disabled : bool
If T (default = F), then matches against the Napster signature are ignored.
NOTE: This variable isconst , so may only be changed viaredef .

gnutella sig disabled : bool
If T (default = F), then matches against the Gnutella signature are ignored.
NOTE: This variable isconst , so may only be changed viaredef .

59

kazaa sig disabled : bool
If T (default = F), then matches against the KaZaA signature are ignored.
NOTE: This variable isconst , so may only be changed viaredef .

http sig disabled : bool
If T (default = F), then matches against the HTTP signature are ignored.
NOTE: This variable isconst , so may only be changed viaredef .

http proxy sig disabled : bool
If T (default = F), then matches against the HTTP proxy signature are ignored.
NOTE: This variable isconst , so may only be changed viaredef .

did sigconns : table[conn id] of set[string]
A table which indicates, for each connection, which backdoor server signatures were found in the connection’s
traffic, e.g., “ftp-sig” or “napster-sig”.

rlogin conns : table[conn id] of rlogin conn info
A table that holds relevant state variables (anrlogin conn info record) forrsh connections.

root backdoor sig conns : set[conn id]
The set of connections for which a root backdoor signature (“root-bd-sig”) has been detected.

ssh len conns : set[conn id]
The set of connections that are predicted to contain SSH traffic, based on the proportion of pack-

ets that meet the expected packet size distribution. Relevant parameters aressh min num pkts and
ssh min ssh pkts ratio , which are local tobackdoor .

ssh min num pkts : count
The minimum number of packets that look like SSH packets thatallow a stream to be classified as such.
NOTE: This variable isconst , so may only be changed viaredef .

ssh min ssh pkts ratio : double
The minimum fraction of packets in a stream that look like SSHpackets that allow a stream to be classified as
such.
NOTE: This variable isconst , so may only be changed viaredef .

telnet sig conns : table[conn id] of count
The set of connections that are predicted to be Telnet connections, based on observation of the Telnet signature,
the IAC byte (0xff).

telnet sig 3byte conns : table[conn id] of count
Similar totelnet sig conns , but the signature matched is a whole 3-byte Telnet command sequence.

6.1.5 bro.init

ignore checksums : bool
If T (default = F), packet checksums are not verified.
NOTE: This variable isconst , so may only be changed viaredef .

60

partial connection ok : bool
If T (the default), instantiate connection state when a partial connection (one missing its initial establishment

negotiation) is seen.
NOTE: This variable isconst , so may only be changed viaredef .

tcp SYNack ok : bool
If T (the default), instantiate connection state when a SYN ack is seen but not the initial SYN (even if par-

tial connectionok is false).
NOTE: This variable isconst , so may only be changed viaredef .

tcp match undelivered : bool
If a connection state is removed there may still be some undelivered data waiting in the reassembler. If T (the
default), pass this to the signature engine before flushing the state.
NOTE: This variable isconst , so may only be changed viaredef .

tcp SYNtimeout : interval
Check up on the result of an initial SYN after this much time.Fix me: What exactly does this mean? Check that
the connection is active?
NOTE: This variable isconst , so may only be changed viaredef .

tcp session timer : interval
After a connection has closed, wait this long for further activity before checking whether to time out its state.
NOTE: This variable isconst , so may only be changed viaredef .

tcp connection linger : interval
When checking a closed connection for further activity, consider it inactive if there hasn’t been any for this

long. Complain if the connection is reused before this much time has elapsed.
NOTE: This variable isconst , so may only be changed viaredef .

tcp attempt delayv : interval
Wait this long upon seeing an initial SYN before timing out the connection attempt.
NOTE: This variable isconst , so may only be changed viaredef .

tcp close delay : interval
Upon seeing a normal connection close, flush state after thismuch time.
NOTE: This variable isconst , so may only be changed viaredef .

tcp reset delay : interval
Upon seeing a RST, flush state after this much time.
NOTE: This variable isconst , so may only be changed viaredef .

tcp partial close delay : interval
Generate a connectionpartial close event this much time after one half of a partial connection closes, assuming
there has been no subsequent activity.
NOTE: This variable isconst , so may only be changed viaredef .

non analyzed lifetime : interval
If a connection belongs to an application that we don’t analyze, time it out after this interval. If 0 secs, then

don’t time it out.
NOTE: This variable isconst , so may only be changed viaredef .

61

inactivity timeout : interval
If a connection is inactive, time it out after this interval.If 0 secs, then don’t time it out.
NOTE: This variable isconst , so may only be changed viaredef .

tcp storm thresh : count
This many FINs/RSTs in a row constitutes a ”storm”. See alsotcp storm interarrival thresh .
NOTE: This variable isconst , so may only be changed viaredef .

tcp storm interarrival thresh : interval
The FINs/RSTs must come with this much time or less between them to be considered a storm. See also

tcp storm thresh .
NOTE: This variable isconst , so may only be changed viaredef .

tcp reassembler ports orig : set[port]
For services without a handler, these sets define which side of a connection is to be reassembled.Fix me: What
is the point of this exactly? What are you analyzing?
NOTE: This variable isconst , so may only be changed viaredef .

tcp reassembler ports resp : set[port]
For services without a handler, these sets define which side of a connection is to be reassembled.Fix me: What
is the point of this exactly? What are you analyzing?
NOTE: This variable isconst , so may only be changed viaredef .

table expire interval : interval
Check for expired table entries after this amount of timeFix me: Which tables?
NOTE: This variable isconst , so may only be changed viaredef .

dns session timeout : interval
Time to wait before timing out a DNS request.
NOTE: This variable isconst , so may only be changed viaredef .

ntp session timeout : interval
Time to wait before timing out an NTP request.
NOTE: This variable isconst , so may only be changed viaredef .

rpc timeout : interval
Time to wait before timing out an RPC request.
NOTE: This variable isconst , so may only be changed viaredef .

watchdog interval : interval
A SIGALRM is set for this interval to make sure that Bro does not get caught up doing something for too long.
Fix me: True?If this happens, Bro is termination after doing a dump of all remaining packets.
NOTE: This variable isconst , so may only be changed viaredef .

heartbeat interval : interval
After each interval of this length, update thenet stats variable.
NOTE: This variable isconst , so may only be changed viaredef .

62

anonymize ip addr : bool
If true (default = false), then IP addresses are anonymized in alert and log generation.
NOTE: This variable isconst , so may only be changed viaredef .

omit rewrite place holder : bool
If true, omit place holder packets when rewriting.Fix me: Should this go somewhere else?
NOTE: This variable isconst , so may only be changed viaredef .

rewriting http trace : bool
If true (default = F), HTTP traces are rewritten.
NOTE: This variable isconst , so may only be changed viaredef .

rewriting smtp trace : bool
If true (default = F), SMTP traces are rewritten.
NOTE: This variable isconst , so may only be changed viaredef .

6.1.6 code-red.bro

code red log : file
The file into which Code Red-related alerts are written.

code red list1 : table[addr] of count
A table which contains, for each IP address, how many Code RedI attacks were observed (based on a signature)
by the machine at that address.

code red list2 : table[addr] of count
A table which contains, for each IP address, how many Code RedII attacks were observed (based on a signature)
by the machine at that address.

local code red response pgm : string
By default, an empty string; if&redef ed, the specified program will be invoked with the attack source IP as
the argument the first time an attack from that IP is observed.

remote code red response pgm : string
By default, an empty string; if&redef ed, the specified program will be invoked with the attack destination IP
as the argument the first time an attack on that IP is observed.

6.1.7 conn.bro

have FTP : bool
If true, ftp.bro has been loaded.

have SMTP : bool
If true, smtp.bro has been loaded.

have stats : bool
True if net stats was ever updated with packet capture statistics.

hot conns reported : set[string]
The set of connections (indexed by the entire ’hot’ message)that have previously been flagged ashot .

63

last stat : net stats
The last recorded snapshot of packet capture statistics, ina net stats record.

last stat time : time
The last time that network statistics were read intonet stats .

RPCserver map : table[addr, port] of string
Maps a given port on a given server’s address to an RPC service. If we haven’t loadedportmapper.bro , then
it will be empty; seeportmapper.bro and theportmapper module documentation for more information.

6.1.8 demux.bro

For more information on demultiplexing of connections, seethe demux module(§ 10.17, page 178).

demux dir : string
The name of the directory which will contain the files with demultiplexed connection data.

demuxed conn : set[conn id]
The set of connections that are currently being demultiplexed.

6.1.9 dns.bro

actually rejected PTR anno : set[string]
Annotations that if returned for a PTR lookup actually indicate a rejected query; for example, ”illegal-

address.lbl.gov”.
NOTE: This variable isconst , so may only be changed viaredef .

sensitive lookup hosts : set[addr]
Hosts in this set generate an alert when they are returned in PTR queries, unless the originating host is in

sensitive lookup hosts .
NOTE: This variable isconst , so may only be changed viaredef .

okay to lookup sensitive hosts : set[addr]
If the DNS request originator is in this set, then it is allowed to look up “sensitive” hosts (see also

sensitive lookup hosts without causing an alert.

dns log : file
The file into which DNS-related alerts are written.

dns sessions : table[addr, addr] of dns session info
A table of outstanding DNS sessions indexed by [client IP, server IP]. Fix me: Need to illustrate

dnssessionsinfo.

num dns sessions : count
The total number of entries that have ever been in thedns sessions table.

distinct PTR requests : table[addr, string] of count
The number of DNS PTR requests obseverd with the given sourceaddress and request string.

64

distinct rejected PTR requests : table[addr] of count
How many DNS PTR requests from the given source address were rejected. A report is generated if this number
crosses a threshold, namely,report rejected PTR thresh .

distinct answered PTR requests : table[addr] of count
How many DNS PTR requests from the given source address were rejected.

report rejected PTR thresh : count
If this many DNS requests from a host are rejected, generate apossible PTR scan event.

report rejected PTR factor : double
If DNS requests from a host are rejected more than accepted bythis factor, generate aPTR scan event.

allow PTR scans : set[addr]
The set of hosts for which aPTR scan event does not generate a report (that is, the scan is allowed).

did PTR scan event : table[addr] of count
A table of hosts for which aPTR scan event has been generated.

6.1.10 dns-mapping.bro

dns interesting changes : h
e set of DNS mapping changes (according to lookups by Bro itself) that is interesting enough to alert on.
NOTE: This variable isconst , so may only be changed viaredef .

6.1.11 finger.bro

hot names : set[string]
If a finger request for any of the names in this set is observed,the associated connection is marked “hot”.
NOTE: This variable isconst , so may only be changed viaredef .

max finger request len : count
If a finger request is longer than this length, then it is marked as “hot”.
NOTE: This variable isconst , so may only be changed viaredef .

rewrite finger trace : bool
Indicates whether or not finger requests are rewritten for anonymity.

6.1.12 ftp.bro

ftp log : file
The file into which FTP-related alerts are written.

ftp sessions : table[conn id] of ftp session info

ftp guest ids : set[string]
The set of login IDs which are guest logins, e.g., “anonymous” and “ftp”.
NOTE: This variable isconst , so may only be changed viaredef .

65

ftp skip hot : set[addr, addr, string]
Indexed by source and destination addresses and the id, these connections are not marked as “hot” even if its

data would to cause it to be otherwise.
NOTE: This variable isconst , so may only be changed viaredef .

ftp hot files : pattern
If a filename matching this pattern is requested, theftp sensitive file event is generated. The default

behavior is to log the connection.
NOTE: This variable isconst , so may only be changed viaredef .

ftp hot guest files : pattern
If a user is logged in under a guest ID and attempts to retrievea file matching this pattern, the

ftp sensitive file event is generated. The default behavior is to log the connection.
NOTE: This variable isconst , so may only be changed viaredef .

ftp hot cmds : table[string] of pattern
If an FTP command matches an index into the table and its argument matches the associated pattern, the

connection is logged.
NOTE: This variable isconst , so may only be changed viaredef .

skip unexpected : set[addr]
Pairs of IP addresses for which we shouldn’t bother logging if one of them is used in lieu of the other in a PORT
or PASV directive.

skip unexpected net : set[addr]
Similar toskip unexpected , but matches a /24 subnet.

ftp data expected : table[addr, port] of addr
Indexed by the server’s responder pair, yields the address expected to make an FTP data connection to it.

ftp data expected session : table[addr, port] of ftp session info
Indexed by the server’s responder pair, yields the associated ftp session info record for the expected

incoming FTP data connection.

ftp excessive filename len : count
If an FTP request filename meets or exceeds this length, anFTP ExcessiveFilename alert is generated.

ftp excessive filename trunc len : count
How much of the excessively long filename is printed in the alert message.

ftp ignore invalid PORT : pattern
Invalid PORT/PASV directives that exactly match this pattern don’t generate alerts.

ftp ignore privileged PASVs : set[port]
If an FTP PASV port is specified to be a privileged port (¡ 1024/tcp) then anFTP PrivPort event is generated,
EXCEPT if the port is in this set.

66

6.1.13 hot.bro

same local net is spoof : bool
If true (default = F), it should be considered a spoofing attack if a connection has the same local net for source
and destination.
NOTE: This variable isconst , so may only be changed viaredef .

allow spoof services : set[port]
The services in this set are not counted as spoofed even if they pass the test from

same local net is spoof .
NOTE: This variable isconst , so may only be changed viaredef .

allow pairs : set[addr, addr]
Connections between these (source address, destination address) pairs are never marked as “hot”.
NOTE: This variable isconst , so may only be changed viaredef .

allow 16 net pairs : set[addr, addr]
Connections between these (/16 network, /32 destination host) pairs are never marked as “hot”.
NOTE: This variable isconst , so may only be changed viaredef .

hot srcs : table[addr] of string
Connections from any of these sources are automatically marked “hot” with the associated message in the table.
NOTE: This variable isconst , so may only be changed viaredef .

hot dsts : table[addr] of string
Connections to any of these destinations are automaticallymarked “hot” with the associated message in the

table.
NOTE: This variable isconst , so may only be changed viaredef .

hot src 24nets : table[addr] of string
Connections from any of these source /24 nets are automatically marked “hot” with the associated message in
the table.
NOTE: This variable isconst , so may only be changed viaredef .

hot dst 24nets : table[addr] of string
Connections to any of these destination /24 nets are automatically marked “hot” with the associated message in
the table.
NOTE: This variable isconst , so may only be changed viaredef .

allow services : set[port]
Connections to this set of services are never marked “hot” (based on port number).
NOTE: This variable isconst , so may only be changed viaredef .

allow services to : set[addr, port]
Connections to the specified host and port are never marked “hot”.
NOTE: This variable isconst , so may only be changed viaredef .

allow service pairs : set[addr, addr, port]
Connections from the first address to the second on the specified destination port are never marked “hot”.
NOTE: This variable isconst , so may only be changed viaredef .

67

flag successful service : table[port] of string
Successful connections to any of the specified ports are flagged with the accompanying message. Examples are
popular backdoor ports.
NOTE: This variable isconst , so may only be changed viaredef .

flag successful inbound service : table[port] of string
Incoming connections to the specified ports are flagged with the accompanying message. This is similar to

flag successful service , but may be used when the port gives to many false positives for outgoing
connections.
NOTE: This variable isconst , so may only be changed viaredef .

terminate successful inbound service : table[port] of string
Connections to this port, if previously flagged byflag successful service or

flag successful incoming service , are terminated.
NOTE: This variable isconst , so may only be changed viaredef .

flag rejected service : table[port] of string
Failed connection attempts to the specified ports are markedas “hot”.
NOTE: This variable isconst , so may only be changed viaredef .

6.1.14 hot-ids.bro

forbidden ids : set[string]
If any of these usernames/login IDs are used, the corresponding connection is terminated.
NOTE: This variable isconst , so may only be changed viaredef .

forbidden ids if no password : set[string]
If any of these usernames/login IDs are used with no password, the corresponding connection is terminated.
NOTE: This variable isconst , so may only be changed viaredef .

forbidden id patterns : pattern
If a username/login ID matches this pattern, the corresponding connection is terminated.
NOTE: This variable isconst , so may only be changed viaredef .

always hot ids : set[string]
Connections that attempt to login with these IDs are always marked “hot”, whether or not they succeed. See

alsohot ids .
NOTE: This variable isconst , so may only be changed viaredef .

hot ids : set[string]
Similar toalways hot ids , except that only successful connections are marked “hot”.
NOTE: This variable isconst , so may only be changed viaredef .

6.1.15 http.bro

http log : file
The file into which HTTP-related alerts are written.

68

http sessions : table[addr, addr] of http session info
A [source, destination] indexed table ofhttp session info records.

include HTTP abstract : bool
Currently used to indicate whether or not an abstract of the HTTP request data will be included in a rewritten
connection.

log HTTP data : bool
If true, an abstract of the HTTP request data is included in a log message.

maintain http sessions : bool
If true, HTTP sessions are maintained across multiple connections, otherwise we not (which saves some mem-
ory).

process HTTP replies : bool
If true, HTTP replies (not just requests) are processed.

process HTTP data : bool
If true, HTTP data is examined as needed (e.g., for making HTTP abstracts, as discussed below).

6.1.16 http-abstract.bro

http abstract max length : count
The maximum number of bytes used to store an abstract for an HTTP connection.
NOTE: This variable isconst , so may only be changed viaredef .

6.1.17 http-request.bro

skip remote sensitive URIs : pattern
URIs matching this pattern should not be considered sensitive if accessed remotely, i.e., by a local client.

have skip remote sensitive URIs : bool
Due to a quirk in Bro, this must be redef’ed to T if you want to useskip remote sensitive URIs .
NOTE: This variable isconst , so may only be changed viaredef .

sensitive URIs : pattern
URIs matching this pattern, but not matchingworm URIs , are logged. See also

skip remote sensitive URIs , sensitive post URIs .
NOTE: This variable isconst , so may only be changed viaredef .

worm URIs : pattern
URIs matching this pattern are not logged even if they matchsensitive URIs , since worms are so common
they would clutter the logs.
NOTE: This variable isconst , so may only be changed viaredef .

sensitive post URIs : pattern
URIs matching this pattern are logged if they are used with the HTTP “POST” method (rather than “GET”).
NOTE: This variable isconst , so may only be changed viaredef .

69

6.1.18 icmp.bro

icmp flows : table[icmp flow id] of icmp flow info
A table tracking all ICMP “flows” byicmp flow id . “Flows”, which are simply inferred related sequences
of packets between two machines, based on ICMP ID, are timed out after (currently) 30 seconds of inactivity.

6.1.19 ident.bro

hot ident ids : set[string]
If any of the User IDs in this set are returned in anident response, anIdentSensitiveIDalert is generated.

hot ident exceptions : set[string]
Exceptions to thehot ident ids set.

public ident user ids : set[string]
User IDs in this set are described as “public” in a rewrittenident trace.

public ident systems : set[string]
Operating system names in this set (e.g., “UNIX”) are reported directly in a rewrittenident trace; other OSes
will be reported as “OTHER”.

rewrite ident trace : bool
If true, traces will be rewritten (partially anonymized).

6.1.20 interconn.bro

interconn conns : table [conn id] of conn info
A conn id -indexed table of all currently-tracked interactive connections. The table entries areconn info

records containing some very basic information about the connection.

interconn log : file
The file into which generic interactive-connection-related alerts are written.

interconn min interarrival : interval
Used in computing the “alpha” parameter, which is used to determine which connections are interactive, based
on the distribution of interarrival times. See alsointerconn max interarrival .
NOTE: This variable isconst , so may only be changed viaredef .

interconn max interarrival : interval
Used in computing the “alpha” parameter, which is used to determine which connections are interactive, based
on the distribution of interarrival times. See alsointerconn min interarrival .
NOTE: This variable isconst , so may only be changed viaredef .

interconn max keystroke pkt size : count
The maximum packet size used to classify keystroke-containing packets.
NOTE: This variable isconst , so may only be changed viaredef .

70

interconn default pkt size : count
The estimated packet size used to calculate the number of packets missed when we see an ack above a hole.Fix
me: Please verify.
NOTE: This variable isconst , so may only be changed viaredef .

interconn stat period : interval
How often to generate a report of interconn stats.
NOTE: This variable isconst , so may only be changed viaredef .

interconn stat backoff : double
Fix me: I don’t fully understand isexpire in timers. The stat report generation interval

(interconn stat period) is increased by this factor each time the report is generated [, unless the
report is generated because all timers are artifically expired].
NOTE: This variable isconst , so may only be changed viaredef .

interconn min num pkts : count
A connection must have this number of packets transferred before it may be classified as interactive.
NOTE: This variable isconst , so may only be changed viaredef .

interconn min duration : interval
A connection must last least this long before it may be classified as interactive.
NOTE: This variable isconst , so may only be changed viaredef .

interconn ssh len disabled : bool
If false (default = T), and at least one side of the connectionhas partial state (the initial negotiation was missed),
then packets are examined to see if they fit the size distribution associated with interactive SSH connections.
NOTE: This variable isconst , so may only be changed viaredef .

interconn min ssh pkts ratio : double
Analogous to ssh min ssh pkts ratio , except used in the context described in

interconn ssh len disabled .
NOTE: This variable isconst , so may only be changed viaredef .

interconn min bytes : count
The number of bytes transferred on a connection must be at least this high before the connection may be

classified as interactive.
NOTE: This variable isconst , so may only be changed viaredef .

interconn min 7bit ascii ratio : double
The ratio of 7-bit ASCII characters to total bytes must be at least this high before the connection may be

classified as interactive.
NOTE: This variable isconst , so may only be changed viaredef .

interconn min num lines : count
The number of lines transferred on a connection must be at least this high before the connection may be

classified as interactive.
NOTE: This variable isconst , so may only be changed viaredef .

71

interconn min normal line ratio : double
The ratio of “normal” lines to total lines must be at least this high before the connection may be classified as

interactive. A normal line, roughly speaking, is one whose length is within a certain bound.Fix me: Please verify
this.
NOTE: This variable isconst , so may only be changed viaredef .

interconn min alpha : double
The “alpha” parameter computed on connection must be at least this high before the connection may be classi-
fied as interactive. This parameter measures certain properties of packet interarrival times. Seeinterconn .
NOTE: This variable isconst , so may only be changed viaredef .

interconn min gamma : double
The “gamme” parameter computed on connection must be at least this high before the connection may be

classified as interactive.
NOTE: This variable isconst , so may only be changed viaredef .

interconn standard ports : set[port]
Connections to or from these ports are marked as interactiveautomatically, unless

interconn ignore standard ports is set to true.
NOTE: This variable isconst , so may only be changed viaredef .

interconn ignore standard ports : bool
If true (default = F), then all connections are analyzed for interactive patterns, regardless of port. See

interconn standard ports .
NOTE: This variable isconst , so may only be changed viaredef .

interconn demux disabled : bool
If false (default = T), then interactive connections are demuxed when being logged.
NOTE: This variable isconst , so may only be changed viaredef .

6.1.21 login.bro

input trouble : pattern
If a user’s keystroke input matches this pattern, then an alert is generated.

edited input trouble : pattern
If a user’s keystroke input matches this pattern, taking into account backspace and delete characters, then an

alert is generated.

full input trouble : pattern
If this pattern is matched in a full line of input, an alert is generated.

input wait for output : pattern
The same asedited input trouble , except that the alert is delayed until the corresponding output is seen,
so that both may be logged together.

output trouble : pattern
If the login output matches this pattern, an alert is generated.

72

full output trouble : pattern
Similar tooutput trouble , but the pattern must match the entire output.

backdoor prompts : pattern
If the login output matches this text, but notnon backdoor prompts , generate a possible-backdoor alert.

non backdoor prompts : pattern
Seebackdoor prompts .

hot terminal types : pattern
If the terminal type used matches this pattern, generate an alert.

hot telnet orig ports : set[port]
If the source port of a telnet connection is in this set, generate an alert.

skip authentication : set[string]
If a string in this set appears where an authentication prompt would normally, skip processing of authentication
(typically for an unauthenticated system).Fix me: Please verify.
NOTE: This variable isconst , so may only be changed viaredef .

login prompts : set[string]
The set of strings that are recognized as login prompts anywhere on a line, e.g., “Login:”.
NOTE: This variable isconst , so may only be changed viaredef .

login failure msgs : set[string]
If any of these strings appear on a line following an authentication attempt, the attempt is considered to have

failed, unless a string fromlogin non failure msgs also appears on the line. This set has higher prece-
dence thanlogin success msgs, and the same precedence aslogin timeouts .
NOTE: This variable isconst , so may only be changed viaredef .

login non failure msgs : set[string]
If any of these strings appear on a line following an authentication attempt, the connection is not considered to
have failed even iflogin failure msgs indicates otherwise.
NOTE: This variable isconst , so may only be changed viaredef .

login success msgs : set[string]
If any of these messages is seen, the connection attempt is assumed to have succeeded. This set has lower

precedence thanlogin failure msgs andlogin timeouts .
NOTE: This variable isconst , so may only be changed viaredef .

login timeouts : set[string]
If any of these messages is seen during the login phase, the connection attempt is assumed to have

timed out. This set has higher precedence thanlogin success msgs, and the same precedence as
login failure msgs.
NOTE: This variable isconst , so may only be changed viaredef .

router prompts : pattern
Fix me: Don’t know what this is

73

non ASCII hosts : set[addr]
The set of hosts that do not use ASCII (and to whom logins are thus not processed).

skip logins to : set[addr]
Do not process logins to this set of hosts.

always hot login ids : pattern
Login names which generate an alert even if the login is not successful.

hot login ids : pattern
Login names which generate an alert, if the login is successful.

rlogin id okay if no password exposed : set[string]
Login names in this set are those which are normally considered sensitive, but are allowed if the associated

password is not exposed.

login sessions : table[conn id] of login session info
A table, indexed by connection ID, oflogin session info records, characterizing each login session.

6.1.22 mime.bro

mime log : file
MIME message-related alerts are logged to this file.

mime sessions : table[conn id] of mime session info
A table, indexed by connection ID, ofmime session info records, characterizing each MIME session.

check relay 3 : function(session: mime session info, msg id: string): bool
Fix me: Don’t know about this

check relay 4 : function(session: mime session info, content hash: string): bool
Fix me: Don’t know about this

6.1.23 ntp.bro

excessive ntp request : count
NTP requests over this length are considered “excessive” and will be flagged (marked “hot”).
NOTE: This variable isconst , so may only be changed viaredef .

allow excessive ntp requests : set[addr]
NTP requests from an address in this set are never consideredexcessively long (see

excessive ntp request).
NOTE: This variable isconst , so may only be changed viaredef .

6.1.24 port-names.bro

port names : table[port] of string
A mapping of well-known port numbers to the associated service names.
NOTE: This variable isconst , so may only be changed viaredef .

74

6.1.25 portmapper.bro

rpc programs : table[count] of string
A table correlating numeric RPC service IDs to string names of the services, e.g.,[1000000] =

‘‘portmapper’’ .

NFS services : set[string]
A set of string names of NFS-related RPC services.
NOTE: This variable isconst , so may only be changed viaredef .

RPCokay : set[addr, addr, string]
Indexed by the host providing the service, the host requesting it, and the service; do not log Sun portmapper

requests from the specified requestor to the specified provider for the specified service.
NOTE: This variable isconst , so may only be changed viaredef .

RPCokay nets : set[net]
Hosts in any of the networks in this set may make portmapper requests without being flagged.
NOTE: This variable isconst , so may only be changed viaredef .

RPCokay services : set[string]
Requests for services in this set will not be flagged.
NOTE: This variable isconst , so may only be changed viaredef .

NFS world servers : set[addr]
Any host may request NFS services from any of the machines in this set without being flagged..
NOTE: This variable isconst , so may only be changed viaredef .

any RPCokay : set[addr, string]
Indexed by the service provider and the service (in string form); any host may access these services without

being flagged.
NOTE: This variable isconst , so may only be changed viaredef .

RPCdump okay : set[addr, addr]
Indexed by requesting host and providing host, respectively; dumps of RPC portmaps are allowed between

these pairs.
NOTE: This variable isconst , so may only be changed viaredef .

RPCdo not complain : set[string, bool]
Indexed by the portmapper request and a boolean that’s T if the request was answered, F it was attempted but
not answered. If there’s an entry in the set matching the current request/attempt, then the access won’t be logged
(unless the connection is hot for some other reason).

suppress pm log : set[addr, string]
Indexed by source and portmapper service. If set, we alreadylogged and shouldn’t do so again.Fix me: Pre-

sumably this can be preloaded with stuff, or we wouldn’t needto document it.

75

6.1.26 rules.bro

rule actions : table[string] of count
Decide what to do when each rule (the index into the table) triggers: Ignore the rule (RULEIGNORE); Pro-

cess the rule but don’t report it individually (RULEQUIET); Log the match intorule file (RULE FILE);
Log the match into bothrule file and the overall log file (generate an alert) (RULELOG). The default is
RULE FILE.
NOTE: This variable isconst , so may only be changed viaredef .

rule file : file
The file into which rule-based alerts are logged.

horiz scan thresholds : set[count]
Log if for a pair (orig, rule) the number of different responders has reached one of the thresholds in this set.
NOTE: This variable isconst , so may only be changed viaredef .

vert scan thresholds : set[count]
Log if for a pair (orig, resp) the number of different rule matches has reached one of the thresholds in this set.
NOTE: This variable isconst , so may only be changed viaredef .

6.1.27 scan.bro

suppress scan checks : bool
If true, we suppress scan checking (we still do account-tried accounting). This is provided because scan check-
ing can consume a lot of memory.

report peer scan : set[count]
When the number of distinct machines connected to by a given external host reaches each of the levels in the
set, an alert is generated.

NOTE: This variable isconst , so may only be changed viaredef .

report outbound peer scan : set[count]
When the number of distinct machines connected to by a given internal host reaches each of the levels in the

set, an alert is generated.

NOTE: This variable isconst , so may only be changed viaredef .

num distinct peers : table[addr] of count
A table indexed by a host’s address which indicates how many distinct machines that host has connected to.

distinct peers : set[addr,addr]
A table indexed by source host and target machine that trackswhich machines have been scanned by each host.

num distinct ports : table[addr] of count
A table indexed by a host’s address which indicates how many distinct ports that host has connected to.

distinct ports : set[addr, port]
A table indexed by source host and target port that tracks which ports have been scanned by each host.

76

report port scan : set[count]
When the number of distinct ports connected to by a given external host reaches each of the levels in the set,

an alert is generated.

NOTE: This variable isconst , so may only be changed viaredef .

possible port scan thresh : count
If a host tries to connect to more than this number of ports, itis considered a possible scanner.

NOTE: This variable isconst , so may only be changed viaredef .

possible scan sources : set[addr]
Hosts are put in this set once they have scanned more thanpossible port scan thresh ports.

num scan triples : table[addr, addr] of count
Indexed by source address and destination address, the number of services scanned for on the latter by the

former. This is only tracked forpossible scan sources .

scan triples : set[addr, addr, port]
For possible scan sources as a source address, the triples of (source address, destination address, and
service/port) scanned.

accounts tried : set[addr, string, string]
Which account names were tried, indexed by source address, user name tried, password tried.

num accounts tried : table[addr] of count
How many accounts, as defined by a (user name, password) pair,were tried by the host with the given address.

report accounts tried : set[count]
When the number of distinct accounts (username, password) tried by a given external host reaches each of the
levels in the set, an alert is generated.
NOTE: This variable isconst , so may only be changed viaredef .

report remote accounts tried : set[count]
When the number of distinct remote accounts (username, password) tried by a given internal host reaches each
of the levels in the set, an alert is generated.
NOTE: This variable isconst , so may only be changed viaredef .

skip accounts tried : set[addr]
Hosts in this set are not subject to alerts based onreport accounts tried and

report remote accounts tried .
NOTE: This variable isconst , so may only be changed viaredef .

addl web : set[port]
Ports in this set are treated as HTTP services.
NOTE: This variable isconst , so may only be changed viaredef .

skip services : set[port]
Connections to ports in this set are ignored for the purposesof scan detection.
NOTE: This variable isconst , so may only be changed viaredef .

77

skip outbound services : set[port]
Connections to external machines on ports in this set are ignored for the purposes of scan detection.
NOTE: This variable isconst , so may only be changed viaredef .

skip scan sources : set[addr]
Hosts in this set are ignored as possible sources of scans.
NOTE: This variable isconst , so may only be changed viaredef .

skip scan nets 16 : set[addr,port]
Connections matching the specified (source host /16 subnet,port) pairs are ignored for the purpose of scan

detection.
NOTE: This variable isconst , so may only be changed viaredef .

skip scan nets 24 : set[addr,port]
Connections matching the specified (source host /24 subnet,port) pairs are ignored for the purpose of scan

detection.
NOTE: This variable isconst , so may only be changed viaredef .

backscatter ports : set[port]
Reverse (SYN-ack) scans seen from these ports are considered to reflect possible SYN flooding backscatter and
not true (stealth) scans.
NOTE: This variable isconst , so may only be changed viaredef .

num backscatter peers : table[addr] of count
Indexed by a host, how many other hosts it connected to with a possible backscatter signature.

distinct backscatter peers : table[addr, addr] of count
A table of [source, destination] observed backscatter activity; the table entry is a count of backscatter packets
from the source to the destination.

report backscatter : set[count]
When the number of machines that a host has sent backscatter packets to reaches each of the levels in the set,
an alert is generated.

Fix me: Need to document connection-dropping related variables.

global can_drop_connectivity = F &redef;
global drop_connectivity_script = "drop-connectivity" & redef;
global connectivity_dropped: set[addr];
const shut_down_scans: set[port] &redef;
const shut_down_all_scans = F &redef;
const shut_down_thresh = 100 &redef;
\indpredefvar{never_shut_down}{set[addr]}
\indpredefvar{never_drop_nets}{set[net]}
\indpredefvar{never_drop_16_nets}{set[net]}
\indpredefvar{did_drop_address}{table[addr] of count}

root servers : set[host]
The set of root DNS servers.
NOTE: This variable isconst , so may only be changed viaredef .

78

gtld servers : set[host]
The set of Generic Top-Level Domain servers (.com, .net, .org, etc.).
NOTE: This variable isconst , so may only be changed viaredef .

6.1.28 site.bro

local nets : set[net]
Class A/B/C networks that are considered “local”.
NOTE: This variable isconst , so may only be changed viaredef .

local 16 nets : set[addr]
/16 address blocks that are considered “local”. These are derived directly fromlocal nets . Fix me: Please
verify this.
NOTE: This variable isconst , so may only be changed viaredef .

local 24 nets : set[addr]
/24 address blocks that are considered “local”. These are derived directly fromlocal nets . Fix me: Please
verify this.
NOTE: This variable isconst , so may only be changed viaredef .

neighbor nets : set[net]
Class A/B/C networks that are considered “neighbors”. Notethat unlike for localnets,neighbor 16 nets
is not merely a /16 addr version of neighbornets, but instead is consultedin additionto neighbornets.
NOTE: This variable isconst , so may only be changed viaredef .

neighbor 16 nets : set[addr]
/16 address blocks that are considered “neighbors”. Note that unlike for localnets, neighbor16 nets isnot

merely a /16 addr version ofneighbor nets , but instead is consultedin additionto neighbor nets .
NOTE: This variable isconst , so may only be changed viaredef .

6.1.29 smtp.bro

local mail addr : pattern
Email addresses matching this pattern are considered to be local. This is used to detect relaying.

smtp log : file
The file into which SMTP-related alerts are written.

smtp sessions : table[conn id] of smtp session info
A table ofsmtp session info records tracking SMTP-related state for a given connection.

process smtp relay : bool
If true (default = F), processing is done to check for mail relaying.
NOTE: This variable isconst , so may only be changed viaredef .

type smtp_session_info: record {
id: count;
connection_id: conn_id;

79

external_orig: bool;
in_data: bool;
num_cmds: count;
num_replies: count;
cmds: smtp_cmd_info_list;
in_header: bool;
keep_current_header: bool; # a hack till MIME rewriter is re ady
recipients: string;
subject: string;
content_hash: string;
num_lines_in_body: count; # lines in RFC 822 body before MIM E decoding
num_bytes_in_body: count; # bytes in entity bodies after MI ME decoding
content_gap: bool; # whether there is content gap in convers ation

relay_1_rcpt: string; # external recipients
relay_2_from: count; # session id of same recipient
relay_2_to: count;
relay_3_from: count; # session id of same msg id
relay_3_to: count;
relay_4_from: count; # session id of same content hash
relay_4_to: count;
};

smtp legal cmds : set[string]
The set of allowed SMTP commands (not currently used).Fix me: Is it used somewhere?
NOTE: This variable isconst , so may only be changed viaredef .

smtp hot cmds : table[string] of pattern
If an SMTP command matching an index into the table has an argument matching the associated pattern, then
the request and its reply are logged.
NOTE: This variable isconst , so may only be changed viaredef .

smtp sensitive cmds : set[string]
If an SMTP command is in this set, the request and its reply arelogged.
NOTE: This variable isconst , so may only be changed viaredef .

6.1.30 smtp-relay.bro

relay log : file
Alerts related to email relaying go in this file.

smtp relay table : table[count] of smtp session info
A table indexed by SMTP session ID (session$id) that keeps track of each session in ansmtp session info
record.

smtp session by recipient : table[string] of smtp session info
A table indexed by the recipient that holds the corresponding smtp session info record.

80

smtp session by message id : table[string] of smtp session info
A table indexed by the email message ID that holds the correspondingsmtp session info record.

smtp session by content hash : table[string] of smtp session info
A table indexed by the MD5 hash of the message that holds the correspondingsmtp session info record.
Fix me: Currently unimplemented?

6.1.31 software.bro

software file : file
Alerts related to host software detection go in this file.

software table : table[addr] of software set
A table of the software running on each host. Asoftware set is itself a table, indexed by the name of the
software, ofsoftware records.

software ident by major : set[string]
Software names in this set could be installed twice on the same machine with different major version numbers.
Such software is identified as “Software-N” where N is the major version number, to disambiguate the two.

6.1.32 ssh.bro

ssh log : file
Alerts related to ssh connections go in this file.

did ssh version : table[addr, bool] of count
Indexed by host IP and (T for client, F for server), the table tracks if we have recorded the SSH version. Values
of one and greater are essentially equivalent.

6.1.33 stepping.bro

step log : file
Alerts related to stepping-stone detection go in this file.

display pairs : table[addr, string] of connection
If ¡conn¿ was a login to ¡dst¿ propagating a $DISPLAY of ¡display¿, then we make an entry of [¡dst¿, ¡display¿]
= ¡conn¿.

tag to conn map : table[string] of connection
Maps login tags like ”Last login ...” to connections.

conn tag info : table[conn id] of tag info
A table, indexed by connection ID, of thetag info related to it. Roughly, “tag info” consists of login strings
like “Last login” and$DISPLAY variables. Since this information can stay constant acrossstepping stones, it
is used to detect them.

detected stones : table[addr, port, addr, port, addr, port, addr, por t] of
count
Indexed by two pairs of connections: (addr,port)-¿(addr,port) and (addr,port)-¿(addr,port) that have been

81

detected to be multiple links in a stepping stone chain. The table value is the “score” of the pair of connections;
the higher the score, the more likely it is to be a real stepping stone pair. More points are assigned for a
timing-based correlation than, say, a$DISPLAY-based correlation.

did stone summary : table[addr, port, addr, port, addr, port, addr, po rt] of
count
Basically tracks which suspected stepping stone connection pairs have had alerts generated for them. See

detected stones for the indexing scheme.

stp delta : interval

NOTE: This variable isconst , so may only be changed viaredef .

stp idle min : interval

NOTE: This variable isconst , so may only be changed viaredef .

stp ratio thresh : double
For timing correlations, the proportion of idle times that must match up for the correlation to be considered

significant.

NOTE: This variable isconst , so may only be changed viaredef .

stp scale : double

NOTE: This variable isconst , so may only be changed viaredef .

stp commonhost thresh : count

NOTE: This variable isconst , so may only be changed viaredef .

stp random pair thresh : count

NOTE: This variable isconst , so may only be changed viaredef .

stp demux disabled : count

NOTE: This variable isconst , so may only be changed viaredef .

skip clear ssh reports : set[addr, string]

NOTE: This variable isconst , so may only be changed viaredef .

82

6.1.34 tftp.bro

tftp alert count : table[addr] of count
Keeps track of the number of observed outbound TFTP connections from each host.

6.1.35 udp.bro

udp req count : table[conn id] of count
Keeps track of the number of UDP requests sent over each connection.

udp rep count : table[conn id] of count
Fix me: not really sure

udp did summary : table[conn id] of count
Keeps track of which connections have been summarized/recordedFix me: what is it really? do people use this?

6.1.36 weird.bro

weird log : file
Alerts related toweird (unexpected or inconsistent) traffic go in this file.

weird action : table[string] of WeirdAction
A table of what to do (aWeirdAction) when faced with a particular “weird” scenario (the index).Example
include logging to the special “weird” file or ignoring the condition.

weird action filters : table[string] of function(c: connection): Weird Action
If an entry exists in this table for a given weird situation, then the corresponding entry is used to determine what
action to take; the default is to look inweird action .

weird ignore host : set[addr, string]
(host, weird condition) pairs in this set are ignored for thepurposes of reporting.
NOTE: This variable isconst , so may only be changed viaredef .

weird do not ignore repeats : set[string]
The included alert conditions are reported even if they are repeated.
NOTE: This variable isconst , so may only be changed viaredef .

6.1.37 worm.bro

worm log : file
The file into which worm-detection-related alerts are written.

worm list : table[addr] of count
A table of infected hosts, indexed by the infected hosts’ addresses. The value is how many times the instance
has been seen sending packets.

worm type list : table[addr, string] of count
A table of infected hosts, indexed by host address and type ofworm. The value is how many times that particular
worm has been seen on the host.

83

6.1.38 Uncategorized

Fix me: These need categorization.

bro log file : file
Used to record the messages logged bylog statements.

Default:stderr, unless you@load the log analyzer; see§ 7.9, page 115 for further discussion.

capture filter : string
Specifies what packets Bro’s filter should record (§ 7.1.2, page 93).

direct login prompts : set[string]
Strings that when seen in a login dialog indicate that the user will be directly logged in after entering their

username, without requiring a password (§ 7.19.2, page 134).

discarder maxlen : int
The maximum amount of data that Bro should pass to a TCP or UDPdiscarder(§ 10.25, page 178).

Default: 128 bytes.

done with network : bool
Set to true when Bro is done reading from the network (or from the save files being played back, per§ 10.24,
page 178). The variable is set by a handler fornet done .

Default: initially set to false.

interfaces : string
A blank-separated list of network interfaces from which Broshould read network traffic. Bro merges packets

from the interfaces according to their timestamps.Deficiency: All interfacesmusthave the same link layer type.

If empty, then Bro does not read any network traffic, unless one or more interfaces are specified using the-i
flag.

Note: interfaces has an&add func that allows you to add interfaces to the list simply using a+=
initialization (§ 10.5, page 176).

Default: empty.

max timer expires : count
Sets an upper limit on how many pending timers Bro will expireper newly arriving packet. If set to 0, then Bro
expires all pending timers whose time has come or past. This variable trades off timer accuracy and memory
requirements (because a number of Bro’s internal timers relate to expiring state) with potentially bursty load
spikes due to a lot of timers expiring at the same time, which can trigger the watchdog, if active.

restrict filter : string
Restricts what packets Bro’s filter should record (§ 7.1.2, page 93).

84

6.2 Predefined Functions

Bro provides a number of built-in functions:

active connection (id: conn id): bool
Returns true if the given connection identifier (originator/responder addresses and ports) corresponds to a

currently-active connection.

active file (f: file): bool
Returns true if the givenfile is open.

add interface (iold: string, inew: string): string
Used to refine the initialization ofinterfaces . Meant for internal use, and as an example of refinement

(§ 10.5, page 176).

add tcpdump filter (fold: string, fnew: string): string
Used to refine the initializations ofcapture filter andrestrict filter . Meant for internal use, and
as an example of refinement (§ 10.5, page 176).

log hook (msg: string): bool
If you define this function, then Bro will call it with each string it is about to log. The function should return
true if Bro should go ahead and log the message, false otherwise. See§ 7.9, page 115 for further discussion and
an example.

byte len (s: string): count
Returns the number of bytes in the given string. This includes any embedded NULs, and also a trailing NUL, if
any (which is why the function isn’t calledstrlen; to remind the user that Bro strings can include NULs).

cat (args: any): string
Returns the concatenation of the string representation of its arguments, which can be of any type. For example,
cat("foo", 3, T) returns"foo3T" .

clean (s: string): string
Returns a cleaned up version ofs , meaning that:

• embedded NULs become the text “\0 ”

• embedded DELs (delete characters) become the text “ˆ? ”

• ASCII “control” characters with code≤ 26 become the text “̂Letter”, whereLetter is the corresponding
(upper case) control character; for example, ASCII 2 becomes “ˆB ”

• ASCII “control” characters with codes between 26 and 32 (non-inclusive) become the text “\x hex-code”;
for example, ASCII 31 becomes “\x1f ”

• if the string does not yet have a trailing NUL, one is added.

close (f: file): bool
Flushes any buffered output for the given file and closes it. Returns true if the file was open, false if already

closed or never opened.

85

connection record (id: conn id): connection
Returns theconnection record corresponding to the given connection identifier.Note: If the connection

does not exist, then exits with a fatal run-time error.

Deficiency: If Bro had an exception mechanism, then we could avoid the fatal run-time error, and likewise could
get rid ofactive connection .

contains string (big: string, little: string): bool
Returns true if the stringlittle occurs somewhere withinbig , false otherwise.

current time (): time
Returns the current clock time. You will usually instead want to usenetwork time .

discarder check icmp (i: ip hdr, ih: icmp hdr): bool
Not documented.

discarder check ip (i: ip hdr): bool
Not documented.

discarder check tcp (i: ip hdr, t: tcp hdr, d: string): bool
Not documented.

discarder check udp (i: ip hdr, u: udp hdr, d: string): bool
Not documented.

edit (s: string, edit char: string): string
Returns a version ofs assuming thatedit char is the “backspace” character (usually"\x08" for backspace
or "\x7f" for DEL). For example,edit("hello there", "e") returns"llo t" .

edit char must be a string of exactly one character, or Bro generates a run-time error and uses the first
character in the string.

Deficiency: To do a proper job,edit should also know about delete-word and delete-line editing; and it
would be very convenient if it could do multiple types of edits all in one shot, rather than requiring separate
invocations.

exit (): int
Exits Bro with a status of 0.

Deficiency: This function should probably allow you to specify the exit status.

Note: If you invoke this function, then the usual cleanup functionsnet done andbro done are not invoked.
There probably should be an additional “shutdown ” function that provides for cleaner termination.

flush all (): bool
Flushes all open files to disk.

fmt (args: any): string
Performssprintf-style formatting. The first argument gives the format specifier to which the remaining argu-

ments are formatted, left-to-right. As withsprintf, the format for each argument is introduced using “%”, and
formats beginning with a positive integerm specify that the given field should have a width ofm characters.
Fields with fewer characters are right-padded with blanks up to this width.

86

A format specifier of “. n” (coming afterm, if present) instructsfmt to use a precision ofn digits. You can
only specify a precision for thee, f or g formats. (fmt generates a run-time error if eitherm or n exceeds 127.)

The different format specifiers are:

% A literal percent-sign character.

D
Format as a date. Valid only for values of typetime .

The exact format isyy–mm–dd–hh:mm:ssfor the local time zone, perstrftime.

d
Format as an integer. Valid for typesbool , count , int , port , addr , andnet , with the latter three
being converted from network order to host order prior to formatting.bool values of true format as the
number 1, and false as 0.

e, f, g Format as a floating point value. Valid for typesdouble , time , andinterval . The formatting is the
same as forprintf, including the field widthm and precisionn.

Given no arguments,fmt returns an empty string.

Given a non-string first argument,fmt returns the concatenation of all its arguments, percat .

Finally, given the wrong number of additional arguments forthe given format specifier,fmt generates a run-time
error.

get login state (c: conn id): count
Returns the state of the given login (Telnet or Rlogin) connection, one of:

LOGIN STATEAUTHENTICATE
The connection is in its initial authentication dialog.

LOGIN STATELOGGEDIN
The analyzer believes the user has successfully authenticated.

LOGIN STATESKIP
The analyzer has skipped any further processing of the connection.

LOGIN STATECONFUSED
The analyzer has concluded that it does not correctly know the state of the connection, and/or the username
associated with it (§ 7.19.1, page 131).

or a run-time error and a value ofLOGIN STATEAUTHENTICATEif the connection is not a login connection.

get orig seq (c: conn id): count
Returns the highest sequence number sent by a connection’s originator, or 0 if there’s no such TCP connection.
Sequence numbers are absolute (i.e., they reflect the valuesseen directly in packet headers; they are not relative
to the beginning of the connection).

get resp seq (c: conn id): count
Returns the highest sequence number sent by a connection’s responder, or 0 if there’s no such TCP connection.

getenv (var: string): string
Looks up the given environment variable and returns its value, or an empty string if it is not defined.

87

is tcp port (p: port): bool
Returns true if the givenport value corresponds to a TCP port, false otherwise (i.e., it belongs to a UDP port).

length (args: any): count
Returns the number of elements in its argument, which must beof type table or set . If not exactly one

argument is specified, or if the argument is not a table or a set, then generates a run-time message and returns 0.

Deficiency: If Bro had a union type, then we could get rid of themagic “args: any ” specification and catch
parameter mismatches at compile-time instead of run-time.

log file name (tag: string): string
Returns a name for a log file (such asweird or red) in a standard form. The form depends on whether

$BROID is set. If so, then the format is “<tag>.<\$BRO_ID> ”. Otherwise, it is simplytag .

mask addr (a: addr, top bits to keep: count): addr
Returns the addressa masked down to the number of upper bits indicated bytop bits to keep , which

must be greater than 0 and less than 33. For example,mask addr(1.2.3.4, 18) returns1.2.0.0 , and
mask addr(1.2.255.4, 18) returns1.2.192.0 .

Compare withto net .

max count (a: count, b: count): count
Returns the larger ofa or b.

max double (a: double, b: double): double
Returns the larger ofa or b.

max interval (a: interval, b: interval): interval
Returns the larger ofa or b.

Deficiency: If Bro supported polymorphic functions, then this function could be merged with its predecessors,
gaining simplicity and clarity.

min count (a: count, b: count): count
Returns the smaller ofa or b.

min double (a: double, b: double): double
Returns the smaller ofa or b.

min interval (a: interval, b: interval): interval
Returns the smaller ofa or b.

Deficiency: If Bro supported polymorphic functions, then this function could be merged with its predecessors,
gaining simplicity and clarity.

mkdir (f: string): bool
Creates a directory with the given name, if it does not already exist. Returns true upon success, false (with a

run-time message) if unsuccessful.

network time (): time
Returns the timestamp of the most recently read packet, whether read from a live network interface or from a
save file (§ 10.24, page 178). Compare againstcurrent time . In general, you should usenetwork time

88

Direction Meaning

CONTENTSNONE Stop recording the connection’s contents.
CONTENTSORIG Record the data sent by the connection originator (often theclient).
CONTENTSRESP Record the data sent by the connection responder (often the server).
CONTENTSBOTH Record the data sent in both directions.

Table 6.1: Different types of directions forset contents file .

unless you’re using Bro for non-networking uses (such as general scripting; not particularly recommended),
because otherwise your script may behave very differently on live traffic versus played-back traffic from a save
file.

open (f: string): file
Opens the given filename for write access. Creates the file if it does not already exist. Generates a run-time error
if the file cannot be opened/created.

open for append (f: string): file
Opens the given filename for append access. Creates the file ifit does not already exist. Generates a run-time

error if the file cannot be opened/created.

open log file (tag: string): file
Opens a log file associated with the given tag, using a filenameformat as returned bylog file name.

parse ftp pasv (s: string): ftp port
Parses the server’s reply to an FTPPASVcommand to extract the IP address and port number indicated by the
server. The values are returned in anftp port record, which has three fields:h, the address (h is mnemonic
for host); p, the (TCP) port; andvalid , a boolean that is true if the server’s reply was in the required format,
false if not, or if any of the individual values (or the indicated port number) are out of range.

parse ftp port (s: string): ftp port
Parses the argument included in a client’s FTPPORTrequest to extract the IP address and port number indi-

cated by the server. The values are returned in anftp port record, which has three fields, as indicated in the
discussion ofparse ftp pasv .

reading live traffic (): bool
Returns true if Bro was invoked to read live network traffic (from one or more network interfaces, per§ 2.1.4,
page 16), false if it’s reading from save files being played back (§ 10.24, page 178).

Note: This function returns true even after Bro has stopped reading network traffic, for example due to receiving
a termination signal (§ 7.2, page 95).

set buf (f: file, buffered: bool)
Specifies that writing to the given file should either be fullybuffered (ifbuffered is true), or line-buffered (if
false). Does not return a value.

set contents file (c: conn id, direction: count, f: file): bool
Specifies that the traffic stream of the given connection in the given direction should be recorded to the given
file. direction is one of the values given in Table 6.2.

89

Note: CONTENTSBOTHresults in the two directions being intermixed in the file, inthe order the data was seen
by Bro.

Note: The data recorded to the file reflects the byte stream, not the contents of individual packets. Reordering and
duplicates are removed. If any data is missing, the recording stops at the missing data; seeack above hole
for how this can happen.

Deficiency: Bro begins recording the traffic stream startingwith new traffic it sees. Experience has shown it
would be highly handy if Bro could record the entire connection to the file, including previously seen traffic. In
principle, this is possible if Bro is recording the traffic toa save file (§ 10.2, page 176), which a separate utility
program could then read to extract the stream.

Returns true upon success, false upon an error.

set login state (c: conn id, new state: count): bool
Manually sets the state of the given login (Telnet or Rlogin)connection tonew state , which should be one
of the values described inget login state .

Generates a run-time error and returns false if the connection is not a login connection. Otherwise, returns true.

set record packets (c: conn id, do record: bool): bool
Controls whether Bro should or should not record the packetscorresponding to the given connection to the save
file (§ 10.2, page 176), if any.

Returns true upon success, false upon an error.

skip further processing (c: conn id): bool
Informs bro that it should skip any further processing of thecontents of the given connection. In particu-

lar, Bro will refrain from reassembling the TCP byte stream and from generating events relating to any an-
alyzers that have been processing the connection. Bro will still generate connection-oriented events such as
connection finished .

This function provides a way to shed some load in order to reduce the computational burden placed on the
monitor.

Returns true upon success, false upon an error.

sub bytes (s: string, start: count, n: count): string
Returns a copy ofn bytes from the given string, starting at positionstart . The beginning of a string corre-

sponds to position 1.

If start is 0 or exceeds the length of the string, returns an empty string.

If the string does not haven characters fromstart to its end, then returns the characters fromstart to the
end.

system (s: string): int
Runs the given string as ashcommand (via C’ssystemcall).

Note: The command is run in thebackgroundwith stdoutredirected tostderr.

Returns the return value from thesystemcall. Note: This corresponds to the status of backgrounding the given
command,not to the exit status of the command itself.A value of 127 corresponds to a failure to executesh,
and -1 to an internal system failure.

90

to lower (s: string): string
Returns a copy of the given string with the uppercase letters(as indicated byisascii and isupper) folded to

lowercase (viatolower).

to net (a: addr): net
Returns the network prefix historically associated with thegiven address. That is, ifa’s leading octet is less

than 128, then returns<a>/8; if between 128 and 191, inclusive, then<a>/16; if between 192 and 223, then
<a>/24; and, otherwise,<a>/32. See the discussion of thenet type for more about network prefixes.

Generates a run-time error and returns0.0.0.0 if the address is IPv6.

Note: Such network prefixes have become obsolete with the advent of CIDR; still, for some sites they prove
useful because they correspond to existing address allocations.

Compare withmask addr .

to upper (s: string): string
Returns a copy of the given string with the lowercase letters(as indicated byisascii and islower) folded to

uppercase (viatoupper).

6.2.1 Run-time errors for non-existing connections

Note that for all functions that take aconn id argument exceptactive connection , Bro generates a run-time
error and returns false if the given connection does not exist.

6.2.2 Run-time errors for strings with NULs

While Bro allows NULs embedded within strings (§ 3.5.1, page 24), for many of the predefined functions, their
presence spells trouble, particularly when the string is being passed to a C run-time function. The same holds for
strings that arenot NUL-terminated. Because Bro string constants and values returned by Bro functions that construct
strings such asfmt andcat are all NUL-terminated, such strings will not ordinarily arise; but their presence could
indicate an attacker attempting to manipulate either a TCP endpoint, or the monitor itself, into misinterpreting a string
they’re sending.

In general, any of the functions above that are passed a string argument will check for the presence of an embedded
NUL or the lack of a terminating NUL. If either occurs, they generate a run-time message, and the string is transformed
into the value"<string-with-NUL>" .

There are three exceptions:clean , byte len , andsub bytes . These functions do not complain about embed-
ded NULs or lack of trailing NULs.

6.2.3 Functions for manipulating strings

Fix me: Missing

6.2.4 Functions for manipulating time

Fix me: Missing

91

Chapter 7

Analyzers and Events

In this chapter we detail the different analyzers that Bro provides. Some analyzers look at traffic in fairly generic
terms, such as at the level of TCP or UDP connections. Others delve into the specifics of a particular application that
is carried on top of TCP or UDP.

As we use the term here,analyzerprimarily refers to Bro’s event engine. We use the termscript to refer to a set of
event handlers (and related functions and variables) written in the Bro language;moduleto refer to a script that serves
primarily to provide utility (helper) functions and variables, rather than event handlers; andhandlerto denote an event
handler written in the Bro language. Furthermore, thestandard scriptis the script that comes with the Bro distribution
for handling the events generated by a particular analyzer.

Note: However, we also sometimes useanalyzerto refer to the event handler that processes events generated by
the event engine.

We characterize the analyzers in terms ofwhatevents they generate, but don’t here go into the details ofhowthey
generate the events (i.e., the nitty gritty C++ implementations of the analyzers).

7.1 Activating an Analyzer

In general, Bro will only do the work associated with a particular analyzer if your policy script defines one or more
event handlers associated with the analyzer. For example, Bro will instantiate an FTP analyzer only if your script
defines anftp request or ftp reply handler. If it doesn’t, then when a new FTP connection begins, Bro will
only instantiate a generic TCP analyzer for it. This is an important point, because some analyzers can require Bro to
capture a large volume of traffic (§ 7.1.2, page 93) and perform a lot of computation; therefore,you need to have a
way to trade off between the type of analysis you do and the performance requirements it entails, so you can strike the
best balance for your particular monitoring needs.

Deficiency: While Bro attempts to instantiate an analyzer ifyou define a handler foranyof the events the analyzer
generates, its method for doing so is incomplete: if you onlydefine an analyzer’s less mainstream handlers, Bro may
fail to instantiate the analyzer.

7.1.1 Loading Analyzers

The simplest way to use an analyzer is to@load the standard script associated with the analyzer. (See§ 10.14,
page 177 for a discussion of@load .) However, there’s nothing magic about these scripts; you can freely modify or

92

write your own. The only caveat is that some scripts@load other scripts, so the original version may wind up being
loaded even though you’ve also written your own version.Deficiency: It would be useful to have a mechanism to fully
override one script with another.

In this chapter we discuss each of the standard scripts as we discuss their associated analyzers.

7.1.2 Filtering

Most analyzers require Bro to capture a particular type of network traffic. These traffic flows can vary immensely in
volume, so different analyzers can cost greatly differing amounts in terms of performance.

Bro predefines two redefinablestring variables that have special interpretations with regard tofiltering. (See
§ 10.5, page 176 for a discussion of redefinable variables.)capture filter is a tcpdump filter that tells Bro
what traffic it should capture.restrict filter limits what traffic Bro captures. Thetcpdump filter Bro uses is:

(capture filter) and (restrict filter)

So, for example, if you specify:

redef capture_filter = "port http";
redef restrict_filter = "net 128.3";

then the correspondingtcpdump filter will be:

(port http) and (net 128.3)

which will capture all TCP port 80 traffic that has either a source or destination address belonging to the128.3
network (i.e.,128.3/16).

If you do not definecapture filter , then its value is set to “tcp or udp ”; if you do not define
restrict filter , then no restriction is in effect.

You may have noticed that other than their default values, the definitions of capture filter and
restrict filter are symmetric. They differ only in the convention of how theyare used. Usually, you either don’t
define a value forrestrict filter at all, or define it just once, using it to specify a restriction that holds across
your environment. For example, either to confine packet capture to a subset of the traffic (like the"net 128.3"
example above), or to exclude a particular traffic source ("not host syn-flood.magnet.com") or both of
these ("net 128.3 and not host syn-flood.magnet.com").

For capture filter , on the other hand, you usually don’t define a single value, but insteadrefine it one or
more times using the+= initializer. (See§ 10.5, page 176 for a discussion of refining a variable’s initial value.) The
waycapture filter ’s refinement is defined, it constructs a filter that is the “or”of each of its refinements. So, for
example, if at one point in your script you have:

redef capture_filter += "port ftp";

and at another:

redef capture_filter += "udp port 53";

and at a third:

redef capture_filter += "len >= 512 and len <= 1024";

then the resultingcapture filter will be:

93

event bro_init()
{
if (restrict_filter == "" && capture_filter == "")

print "tcp or not tcp"; # Capture everything.

else if (restrict_filter == "")
print capture_filter;

else if (capture_filter == "")
print restrict_filter;

else
print fmt("(%s) and (%s)", capture_filter, restrict_filt er);

exit();
}

Figure 7.1:print-filter prints out thetcpdump filter your Bro script would use and then exits.

(port ftp) or (udp port 53) or (len >= 512 and len <= 1024)

(except there will be more parentheses, which don’t actually affect the interpretation of the filter; see§ 5.1.6, page 56
for the details of how the refinement is done, and why it leads to the extra parentheses).

restrict filter has the same refinement mechanism, the “or”ing together of the different refinement addi-
tions, though, as mentioned above, it is not usually refined.

As you add analyzers, the finaltcpdump filter can become quite complicated. You can use the predefined
print-filter script shown in Figure 7.1.2 to print out the filter. This script handles thebro init event and exits
after printing the filter. Its intended use is that you can addit to the Bro command line (“bro my-own-script
print-filter ”) when you want to see what filter the scriptmy-own-scriptwinds up using.

There are two particular uses forprint-filter . The first is to debug filtering problems. Unfortunately, Bro
sometimes uses sufficiently complicated expressions that they tickle bugs intcpdump ’s optimizer. You can take the
filter printed out for your script and try running it throughtcpdump by hand, and then also try usingtcpdump ’s -O
option to see if turning off the optimizer fixes the problem.

The second use is to provide ashadowbackup to Bro: that is, a version oftcpdump running either on the same
machine or a separate machine that uses the same network filter as Bro. Whiletcpdump can’t perform any analysis
of the traffic, the shadow guards against the possibility of Bro crashing, because if it does, you will still have a record
of the subsequent network traffic which you can run through Bro for post-analysis.

7.2 General Processing Events

Bro provides the following events relating to its overall processing:

bro init ()
generated when Bro first starts up. In particular, after Bro has initialized the network (or initialized to read from

94

a save file) and executed any initializations and global statements (§ 10.15, page 177), and just before Bro begins
to read packets from the network input source(s).

net done (t: time)
generated when Bro has finished reading from the network, dueto either having exhausted reading the save

file(s), or having received a terminating signal (§ 7.2, page 95).Deficiency: This event is generated on a termi-
nating signal even if Bro is not reading network traffic.t gives the time at which network processing finished.

This event is generatedbeforebro done . Note: If Bro terminates due to an invocation ofexit , then this event
is notgenerated.

bro done ()
generated when Bro is about to terminate, either due to having exhausted reading the save file(s), receiving a

terminating signal (§ 7.2, page 95), or because Bro was run without the network input source and has finished
executing any global statements (§ 10.15, page 177).

This event is generatedafter net done . If you have cleanup that only needs to be done when processing
network traffic, it likely is better done usingnet done . Note: If Bro terminates due to an invocation ofexit ,
then this event isnotgenerated.

bro signal (signal: count)
generated when Bro receives a signal. Currently, the signals Bro handles areSIGTERM, SIGINT, andSIGHUP.

Receiving either of the first two terminates Bro, though if Bro is in the middle of processing a set of events, it
first finishes with them before shutting down. The shutdown leads to invocations ofnet done andbro done ,
in that order.Deficiency: In this case, Bro fails to invokebro signal , clearly a bug.

Upon receivingSIGHUP, Bro invokesflush all (in addition to your handler, if any).

net stats update (t: time, ns: net stats)
This event includes two arguments,t , the time at which the event was generated, andns , a net stats

record, as defined in Figure 7.2. Regarding this second parameter, thepkts recvd field gives the total number
of packets accepted by the packet filter so far during this execution of Bro;pkts dropped gives the total
number of packets reporteddroppedby the kernel; andinterface drops gives the total number of packets
reported by the kernel as having been dropped by the network interface.

Note: An important consideration is that, as shown by experience, the kernel’s reporting of these statistics is not
always accurate. In particular, the$pkts dropped statistic is sometimes missing actual packet drops, and
some operating systems do not support theinterface drops statistic at all. See theack above hole
event for an alternate way to detect if packets are being dropped.

7.3 Generic Connection Analysis

Theconn analyzer performs generic connection analysis: connection start time, duration, sizes, hosts, and the like.
You don’t in general loadconn directly, but instead do so implicitly by loading thetcp , udp , or icmp analyzers.
Consequently,conn doesn’t load acapture filter value by itself, but instead uses whatever is set up by these
more specific analyzers.

conn analyzes a number of events related to connections beginning or ending. We first describe theconnection
record data type that keeps track of the state associated with each connection (§ 7.3.1, page 96), and then we detail the

95

type net_stats: record {
All counts are cumulative.
pkts_recvd: count; # Number of packets received so far.
pkts_dropped: count; # Number of packets *reported* droppe d.
interface_drops: count; # Number of drops reported by inter face(s).

};

Figure 7.2: Definition of thenet stats record.

events in§ 7.3.3, page 99. The main output of its analysis are one-line connection summaries, which we describe in
§ 7.3.6, page 101, and in§ 7.3.7, page 103 we give an overview of the different callablefunctions provided byconn .

conn also loads three other Bro modules: thehot andscan analyzers, and theport-name utility module.

7.3.1 Theconnection record

A connection record holds the state associated with a connection, as shown in Figure 7.3.1. Its first field,id , is
defined in terms of theconn id record, which has the following fields:

orig h
The IP address of the host that originated (initiated) the connection. In “client/server” terminology, this is the
“client.”

orig p
The TCP or UDP port used by the connection originator (client). For ICMP “connections”, it is set to 0 (§ 7.25,
page 164).

resp h
The IP address of the host that responded (received) the connection. In “client/server” terminology, this is the
“server.”

resp p
The TCP or UDP port used by the connection responder (server). For ICMP “connections”, it is set to 0 (§ 7.25,
page 164).

Theorig andresp fields of aconnection record both holdendpoint record values, which consist of the
following fields:

size
How many bytes the given endpoint has transmitted so far. Note that for some types of filtering, the size

will be zero until the connection terminates, because the nature of the filtering is to discard the connection’s
intermediary packets and only capture its start/stop packets (§ 10.8, page 177).

state
The current state the endpoint is in with respect to the connection. Table 7.3.1 defines the different possible states
for TCP and UDP connections.Deficiency: The states are currently defined ascount , but should instead be
an enumerated type; but Bro does not yet support enumerated types.

Note: UDP “connections” do not have a well-defined structure, so the states for them are quite simplistic. See
§ 7.3.2, page 98 for further discussion.

96

type conn_id: record {
orig_h: addr; # Address of originating host.
orig_p: port; # Port used by originator.
resp_h: addr; # Address of responding host.
resp_p: port; # Port used by responder.

};

type endpoint: record {
size: count; # Bytes sent by this endpoint so far.
state: count; # The endpoint’s current state.

};

type connection: record {
id: conn_id; # Originator/responder addresses/ports.
orig: endpoint; # Endpoint info for originator.
resp: endpoint; # Endpoint info for responder.
start_time: time; # When the connection began.
duration: interval; # How long it was active (or has been so fa r).
service: string; # The service we associate with it (e.g., "h ttp").
addl: string; # Additional information associated with it.
hot: count; # How many times we’ve marked it as sensitive.

};

Figure 7.3: Definition ofconn id andconnection records.

State Meaning
TCP INACTIVE The endpoint has not sent any traffic.
TCP SYNSENT It has sent a SYN to initiated a connection.
TCP SYNACKSENT It has sent a SYN ACK to respond to a connection request.
TCP PARTIAL The endpoint has been active, but we did not see the beginningof the connection.
TCP ESTABLISHED The two endpoints have established a connection.
TCP CLOSED The endpoint has sent a FIN in order to close its end of the connection.
TCP RESET The endpoint has sent a RST to abruptly terminate the connection.

UDPINACTIVE The endpoint has not sent any traffic.
UDPACTIVE The endpoint has sent some traffic.

Table 7.1: TCP and UDP connection states, as stored in anendpoint record.

97

The remaining fields in aconnection record are:

start time
The time at which the first packet associated with this connection was seen.

duration
How long the connection lasted, or, if it is still active, howlong since it began.

service
The name of the service associated with the connection. For example, ifidresp_p is tcp/80 , then the

service will be"http" . Usually, this mapping is provided by theport names global variable, perhaps via
theendpoint id function; but the service does not always directly correspond to idresp_p , which is
why it’s a separate field. In particular, an FTP data connection can have aservice of "ftp-data" even
though itsidresp_p is something other thantcp/20 (which is not consistently used by FTP servers).

If the name of the service has not yet been determined, then this field is set to an empty string.

addl
Additional information associated with the connection. For example, for alogin connection, this is the username
associated with the login.

Deficiency: A significantdeficiencyassociated with theaddl field is that it is simply astring without any
further structure. In practice, this has proven too restrictive. For example, we may well want to associate an
unambiguous username with alogin session,and also keep track of the names associated with failed login
attempts. (See thelogin analyzer for an example of how this is implemented presently.) What’s needed is a
notion ofunion types which can then take on a variety of values in a type-safemanner.

If no additional information is yet associated with this connection, then this field is set to an empty string.

hot
How many times this connection has been marked as potentially sensitive or reflecting a break-in. The default
value of 0 means that so far the connection has not been regarded as “hot”.

Note: Bro does not presently make fine-grained use of this field; the standard scripts log connections with a
non-zerohot field, and do not in general log those that do not, though thereare exceptions. In particular, the
hot field is not rigorously maintained as an indicator of trouble; it instead is used loosely as an indicator of
particular types of trouble (access to sensitive hosts or usernames).

7.3.2 Definitions of connections

Connections for TCP are well-defined, because establishingand terminating a connection plays a central part of the
TCP protocol. For UDP and ICMP, however, the notion is much looser.

For UDP, a connection begins when hostA sends a packet to hostB for the first time,B never having sent
anything toA. This transmission is termed arequest, even if in fact the application protocol being used is not based
on requests and replies. IfB sends a packet back, then that packet is termed areply. Each packetA or B sends is
another request or reply.Deficiency: There is presently no mechanism by which generic(non-RPC) UDP connections
are terminated; Bro holds the state indefinitely. There should probably be a generic timeout for UDP connections that
don’t correspond to some higher-level protocol (such as RPC), and a user-accessible function to mark connections
with particular timeouts.

98

For ICMP, Bro likewise creates a connection the first time it sees an ICMP packet fromA toB, even ifB previously
sent a packet toA, because that earlier packet would have been for a differenttransportconnection than the ICMP
itself—the ICMP will likely refer to that connection, but it itself is not part of the connection. For simplicity, this holds
even for ICMP ECHOs and ECHOREPLYs; if you want to pair them up, you need to do so explicitly in the policy
script.Deficiency: As with UDP, Bro does not time out ICMP connections.

7.3.3 Generic TCP connection events

There are a number of generic events associated with TCP connections, all of which have a singleconnection
record as their argument:

new connection
Generated whenever state for a new (TCP) connection is instantiated.

Note: Handling this event is potentially expensive. For example, during a SYN flooding attack, every spoofed
SYN packet will lead to a newnew connection event.

connection established
Generated when a connection has become established, i.e., both participating endpoints have agreed to open the
connection.

connection attempt
Generated when the originator (client) has unsuccessfullyattempted to establish a connection. “Unsuccessful”
is defined as at leastATTEMPTINTERVAL seconds having elapsed since the client first sent a connection
establishment packet to the responder (server), whereATTEMPTINTERVAL is an internal Bro variable which
is presently set to 300 seconds.Deficiency: This variable should be user-settable.If you want to immediately
detect that a client is attempting to connect to a server, regardless of whether it may soon succeed, then you want
to handle thenew connection event instead.

Note: Handling this event is potentially expensive. For example, during a SYN flooding attack, every spoofed
SYN packet will lead to a newconnection attempt event, albeit delayed byATTEMPTINTERVAL.

partial connection
Generated when both connection endpoints enter theTCP PARTIAL state (Table 7.3.1). This means

that we have seen traffic generated by each endpoint, but the activity did not begin with the usual con-
nection establishment.Deficiency: For completeness, Bro’s event engine should generate another form of
partial connection event when a single endpoint becomes active (seenew connection below). This
hasn’t been implemented because our experience is network traffic often contains a great deal of “crud”, which
would lead to a large number of these really-partial events.However, by not providing the event handler, we
miss an opportunity to detect certain forms of stealth scansuntil they begin to elicit some form of reply.

connection finished
Generated when a connection has gracefully closed.

connection rejected
Generated when a server rejects a connection attempt by a client.

Note: This event is only generated as the client attempts to establish a connection. If the server instead ac-
cepts the connection and then later aborts it, aconnection reset event is generated (see below). This can
happen, for example, due to use of TCP Wrappers.

99

Note: Per the discussion above, a client attempting to connect to a server will result in one of
connection attempt , connection established , or connection rejected ; they are mutually
exclusive.

connection half finished
Generated when Bro sees one endpoint of a connection attemptto gracefully close the connection, but the other
endpoint is in theTCP INACTIVE state. This can happen due tosplit routing(§ 10.9, page 177), in which Bro
only sees one side of a connection.

connection reset
Generated when one endpoint of an established connection terminates the connection abruptly by sending a

TCP RST packet.

connection partial close
Generated when a previously inactive endpoint attempts to close a connection via a normal FIN handshake

or an abort RST sequence. When it sends one of these packets, Bro waitsPARTIAL CLOSEINTERVAL (an
internal Bro variable set to 10 seconds) prior to generatingthe event, to give the other endpoint a chance to close
the connection normally.

connection pending
Generated for each still-open connection when Bro terminates.

7.3.4 Thetcp analyzer

The generaltcp analyzer lets you specify that you’re interested in genericconnection analysis for TCP. It simply
@load ’s conn and adds the following tocapture filter :

tcp[13] & 0x7 != 0

which instructs Bro to capture all TCP SYN, FIN and RST packets; that is, the control packets that delineate the
beginning (SYN) and end (FIN) or abnormal termination (RST)of a connection.

7.3.5 Theudp analyzer

The generaludp analyzer lets you specify that you’re interested in genericconnection analysis for UDP. It@load ’s
bothhot andconn , and defines two event handlers:

udp request (u: connection)
Invoked whenever a UDP packet is seen on the forward (request) direction of a UDP connection. See§ 7.3.2,
page 98 for a discussion of how Bro defines UDP connections.

The analyzer invokescheck hot with a mode ofCONNATTEMPTEDand thenrecord connection to
generate a connection summary (necessary because Bro does not time out UDP connections, and hence cannot
generate a connection-attempt-failed event).

udp reply (u: connection)
Invoked whenever a UDP packet is seen on the reverse (reply) direction of a UDP connection. See§ 7.3.2,

page 98 for a discussion of how Bro defines UDP connections.

100

The analyzer invokescheck hot with a mode ofCONNESTABLISHEDand then again with a mode of
CONNFINISHED to cover the general case that the reply reflects that the connection was both established
and is now complete. Finally, it invokesrecord connection to generate a connection summary.

Note: The standard script doesnot updatecapture filter to capture UDP traffic. Unlike for TCP, where
there is a natural generic filter that captures only a subset of the traffic, the only natural UDP filter would be simply
to capture all UDP traffic, and that can often be a huge load.

7.3.6 Connection summaries

The main output ofconn is a one-line ASCII summary of each connection. By tradition, these summaries are written
to a file with the namered. tag, wheretaguniquely identifies the Bro session generating the logs. (“red ” is mnemonic
for “reduced,” from Bro’s roots in performing protocol analysis for Internet traffic studies.)

The summaries are produced by therecord connection function, and have the following format:

<start> <duration> <service> Bo Br Al Ar <state> <flags> <addl>

start corresponds to the connection’s start time, as defined bystart time .

duration gives the connection’s duration, as defined byduration .

service is the connection’s service, as defined byservice .

Bo, Br give the number of bytes sent by theoriginator andresponder, respectively. These correspond to thesize
fields of the correspondingendpoint records.

Al, Ar correspond to thelocal andremoteaddresses that participated in the connection, respectively. The notion of
which addresses are local is controlled by thelocal nets global variable, if refined from its default value
of empty. If local nets hasnot been refined, thenAl is the connectionresponderandAr is the connection
originator.

Note: The format and defaults forAl and Ar are unintuitive; they reflect the use of Bro’s predecessor for
analyzing Internet traffic patterns, and have not been changed so as to maintain compatibility with old, archived
connection summaries.

state reflects the state of the connection at the time the summary was written (which is usually either when the
connection terminated, or when Bro terminated). The different states are summarized in Table 7.3.6. The ASCII
Name given in the Table is what appears in thered file; it is returned by theconn state function. The
Symbol is used when generating human-readable versions of the file—seehot-report .

For UDP connections, the analyzer reports connections for which both endpoints have been active asSF; those
for which just the originator was active asS0; those for which just the responder was active asSHR; and those
for which neither was active asOTH(this latter shouldn’t happen!).

flags reports a set of additional binary state associated with theconnection:

L indicates that the connection was initiatedlocally, i.e., the host corresponding toAl initiated the connection.
If L is missing, then the host corresponding toAr initiated the connection.

101

Symbol Name Meaning

} S0 Connection attempt seen, no reply.
> S1 Connection established, not terminated.
> SF Normal establishment and termination. Note that this is the

same symbol as for stateS1. You can tell the two apart because
for S1 there will not be any byte counts in the summary, while
for SF there will be.

[REJ Connection attempt rejected.
}2 S2 Connection established and close attempt by originator seen

(but no reply from responder).
}3 S3 Connection established and close attempt by responder seen

(but no reply from originator).
>] RSTO Connection established, originator aborted (sent a RST).
>[RSTR Established, responder aborted.
}] RSTOS0 Originator sent a SYN followed by a RST, we never saw a SYN

ACK from the responder.
<[RSTRH Responder sent a SYN ACK followed by a RST, we never saw

a SYN from the (purported) originator.
>h SH Originator sent a SYN followed by a FIN, we never saw a

SYN ACK from the responder (hence the connection was “half”
open).

<h SHR Responder sent a SYN ACK followed by a FIN, we never saw
a SYN from the originator.

?>? OTH No SYN seen, just midstream traffic (a “partial connection” that
was not later closed).

Table 7.2: Summaries of connection states, as reported inred files.

102

U indicates the connection involved one of the networks listed in theneighbor nets variable. The use of “U”
for this indication (rather than “N”, say) is historical, as for the most part is the whole notionof “neighbor
network.”

Note that connection can have bothL andUset (see next item).

X is used to indicate thatneither the “L” or “ U” flags is associated with this connection. An explicit negative
indication is needed to disambiguate theflagsfield from the subsequentaddlfield.

addl lists additional information associated with the connection, i.e., as defined byaddl .

Putting all of this together, here is an example of ared connection summary:

931803523.006848 54.3776 http 7320 38891 206.132.179.35 1 28.32.162.134 RSTO X %103

The connection began at timestamp 931803523.006848 (18:18:43 hours GMT on July 12, 1999; see thecf utility
for how to determine this) and lasted 54.3776 seconds. The service was HTTP (presuambly; this conclusion is based
just on the responder’s use of port80/tcp). The originator sent 7,320 bytes, and the responder sent 38,891 bytes.
Because the “L” flag is absent, the connection was initiated by host 128.32.162.134, and the responding host was
206.132.179.35. When the summary was written, the connection was in the “RSTO” state, i.e., after establishing
the connection and transferring data, the originator had terminated it with a RST (this is unfortunately common for
Web clients). The connection had neither theL or U flags associated with it, and there was additional information,
summarized by the string “%103” (see thehttp analyzer for an explanation of this information).

7.3.7 Connection functions

We finish our discussion of generic connection analysis witha brief summary of the different Bro functions provided
by theconn analyzer:

conn size (e: endpoint, is tcp: bool): string
returns a string giving either the number of bytes the endpoint sent during the given connection, or"?" if from
the connection state this can’t be determined. Theis tcp parameter is needed so that the function can inspect
the endpoint’s state to determine whether the connection was closed.

conn state (c: connection, is tcp: bool): string
returns the name associated with the connection’s state, asgiven in Table 7.3.6.

determine service (c: connection): bool
sets theservice field of the given connection, usingport names. If you are using theftp analyzer, then
it knows about FTP data connections and maps them toport names[20/tcp] , i.e.,"ftp-data" .

full id string (c: connection): string
returns a string identifying the connection in one of the twofollowing forms. If the connection is in stateS0,
S1, or REJ, then no data has been transferred,1 and the format is:

Ao <state> Ar/< service> <addl>

1Deficiency: Actually, for stateS1 data may have been transferred, and so this assumption should be corrected in that case.

103

whereAo is the IP address of the originator (idorig h), state is as given in theSymbol column of
Table 7.3.6,Ar is the IP address of the responder (idresp h), servicegives the application service
($service) as set bydetermine service , andaddl is the contents of the$addl field (which may be an
empty string).

Note that the ephemeral port used by the originator is not reported. If you want to display it, useid string .

So, for example:

128.3.6.55 > 131.243.88.10/telnet "luser"

identifies a connection originated by128.3.6.55 to 131.243.88.10 ’s Telnet server, for which the addi-
tional associated information is"luser" , the username successfully used during the authenticationdialog as
determined by thelogin analyzer. From Table 7.3.6 we see that the connection must bein stateS1, as that’s
the only state ofS0, S1, or REJ that has a> symbol. (We can tell it’snot in stateSF because the format used
for that state differs—see below.)

For connections in other states, Bro has size and duration information available, and the format returned by
full id string is:

Ao Sob <state> Ar/< service> Srb Ds <addl>

whereAo, Ar, state, service, andaddl are as before,So andSr give the number of bytes transmitted so far by
the originator to the responder and vice versa, andD gives the duration of the connection in seconds (reported
with one decimal place) so far.

An example of this second format is:

128.3.6.55 63b > 131.243.88.10/telnet 391b 39.1s "luser"

which reflects the same connection as before, but now128.3.6.55 has transmitted 63 bytes to
131.243.88.10 , which has transmitted 391 bytes in response, and the connection has been active for 39.1
seconds. The “>” indicates that the connection is in stateSF.

id string (id: conn id): string
returns a string identifying the connection by its address/port quadruple. Regardless of the connection’s state,

the format is:

Ao/ Po > Ar/ Pr

whereAo andAr are the originator and responder addresses, respectively,andPo andPr are representations
of the originator and responder ports as returned by theport-name module, i.e., either “<number>/<tcp or
udp> ” or a string like “http ” for a well-known port such as80/tcp .

An example:

128.3.6.55/2244 > 131.243.88.10/telnet

Note,id string is implemented using a pair of calls toendpoint id .

Deficiency: It would be convenient to have a form ofid string that can incorporate a notion of directionality,
for example128.3.6.55/2244 < 131.243.88.10/telnet to indicate the same connection as before,
but referring specifically to the flow from responder to originator in that connection (indicated by using “<”
instead of “>”).

104

log hot conn (c: connection)
logs a real-time alert of the form:

hot:<connection-id>

whereconnection-idis the format returned byfull id string . log hot conn keeps track of which con-
nections it has logged and will not log the same connection more than once.

record connection (c: connection, disposition: string)
Generates a connection summary to thered file in the format described in§ 7.3.6, page 101. If the connection’s
$hot field is positive, then also logs the connection usinglog hot conn . The disposition is a text
description of the connection’s state, such as"attempt" or "half finished" ; it is not presently used.

service name (c: connection): string
returns a string describing the service associated with theconnection, computed as follows. If the responder

port (idresp p), p, is well-known, that is, in theport names table, thenp’s entry in the table is returned
(such as"http" for TCP port 80). Otherwise, for TCP connections, if the responder port is less than 1024,
thenpriv- p is returned, otherwiseother- p. For UDP connections, the corresponding service names are
upriv- p anduother- p.

terminate connection (c: connection)
Attempts to terminate the given connection using therst utility in the current directory. It does not check to
see whether the utility is actually present, so an unaesthetic shell error will appear if the utility is not available.

rst terminates connections by forging RST packets. It is not presently distributed with Bro, due to its potential
for disruptive use.

If Bro is reading a trace file rather than live network traffic,then terminate connection logs therst
invocation but does not actually invoke the utility. In either case, it finishes by logging that the connection is
being terminated.

7.4 Site-specific information

Thesite analyzer is not actually an analyzer but simply a set of global variables (and one function) used to define a
site’s basic topological information.

7.4.1 Site variables

Thesite module defines the following variables, all redefinable:

local nets : set[net]
Defines whichnet ’s Bro should consider as reflecting a local address.

Default: empty.

local 16 nets : set[net]
Defines which /16 prefixes Bro should consider as reflecting a local address.Deficiency: Bro currently is in-

consistent regarding when it consultslocal nets versuslocal 16 nets , so you should ensure that this
variable and the previous one are always consistent.

Default: empty.

105

local 24 nets : set[net]
The same, but for /24 addresses.

Default: empty.

neighbor nets : set[net]
Defines whichnet ’s Bro should consider as reflecting a “neighbor.” Neighborsnetworks can be treated spe-

cially in some policies, distinct from other non-local addresses. In particular,drop address will not drop
connectivity to an address belonging to a neighbor.

The notion is somewhat historical, as is the use of “U” to mark neighbors in connection summaries (§ 7.3.6,
page 101).

Default: empty.

neighbor 16 nets : set[addr]
Defines which /16 addresses Bro should consider as reflectinga neighbor; the only use of this variable in the

standard scripts is that a scan originating from an address with one of these prefixes will not be dropped (§ 10.10,
page 177).Deficiency: The name is poorly chosen and should be changed tobetter reflect this use. Deficiency: In
addition, this variable should be kept consistent withneighbor nets , until the fine day when the processing
is rectified to only use one variable.

Default: empty.

neighbor 24 nets : set[net]
The same, but for /24 addresses.

Default: empty.

7.4.2 Site-specific functions

Currently, thesite module only defines one function:

is local addr (a: addr): bool
returns true if the given address belongs to one of the “local” networks, false otherwise. Currently, the test is

made by masking the address to /16 and /24 and comparing it tolocal 16 nets andlocal 24 nets .

7.5 Thehot Analyzer

The standardhot script defines policy relating to fairly generic notions of allowed and prohibited connections. It
defines a number of variables that you will need to refine to customize your site’s policies. It also provides two
functions for checking connections against the policies, which can be used by other of the standard scripts.

7.5.1 hot variables

The standardhot script defines the following variables, all redefinable:

106

same local net is spoof : bool
If true, then a connection with a local originator address and a local responder address is considered by

check spoof to have been spoofed.Deficiency: The name is poorly chosen (and may be changed in the
future) to something more accurate likeboth local nets is spoof .

In general, you want to use true for a Bro that is monitoring Internet access links (DMZs) and false for internal
monitors.

Default:F.

allow spoof services : set[port]
Defines a set of services (responder ports) for which Bro should not generate alerts if it sees apparent spoofed
traffic.

Default:110/tcp (POP version 3; [RFC1939]). This default was chosen becausein our experience one com-
mon form of benign spoof is an off-site laptop attempting to read mail while still configured to use its on-site
address.

allow pairs : set[addr, addr]
Defines pairs of source and destination addresses for which the source is allowed to connect to the destination.
The intent with this variable is that the source or destination address will be a sensitive host (such as defined
with hot srcs or hot dsts), for which this particular access should be allowed.

Default: empty.

allow 16 net pairs : set[addr, addr]
Defines pairs of source and destination /16 networks for which the source is allowed to connect to the desti-

nation, similar toallow pairs . Note: The set is defined in terms ofaddr ’s and notnet ’s. So, for example,
rather than specifying128.32. , which is anet constant, you’d use128.32.0.0 (anaddr constant).

Default: empty.

hot srcs : table[addr] of string
Defines source addresses that should be considered “hot”. A successfully established connection from such

a source address is logged, unless one of the access exception variables such asallow pairs also matches
the connection. The value of the table gives an explanatory message as to why the source is hot; for example,
"known attacker site" . Note: This value is not currently used, though it aids in documenting the policy
script.

Default: empty.

Example: redefininghot srcs using

redef hot_srcs: table[addr] of string = {
[ph33r.the.eleet.com] = "script kideez",

};

would result in Bro alerting on any traffic comingph33r.the.eleet.com .

hot dsts : table[addr] of string
Same ashot srcs , except for destination addresses.

Default: empty.

107

hot src 24nets : table[addr] of string
Defines /24 source networks should be considered “hot,” similar to hot srcs . Deficiency: Other network

masks, particularly /16, should be provided.

Default: empty.

Example: redefininghot src 24nets using

redef hot_src_24nets: table[addr] of string = {
[198.81.129.0] = "CIA incoming!",

};

would result in Bro alerting on any traffic coming from the198.81.129/24 network.

hot dst 24nets : table[addr] of string
same ashot src 24nets , except for destination networks.

Default: empty.

allow services : set[port]
Defines a set of services that are always allowed, regardlessof whether the source or destination address is

“hot.”

Default:ssh , http , gopher ident , smtp , 20/tcp (FTP data).

Note: The defaults are a bit unusual. They are intended for a quite open site with many services.

allow services to : set[addr, port]
Defines a set of services that are always allowed if the serveris the given host, regardless of whether the source
or destination address is “hot.”

Default: empty.

Example: redefiningallow services to using

redef allow_services_to: set[addr, port] += {
[ns.mydomain.com, [domain, 123/tcp]],

} &redef;

would result in Bro not alerting on any TCP DNS or NTP traffic heading tons.mydomain.com . You might
add this ifns.mydomain.com is also inhot dsts , because in general you want to consider any access
(other than DNS or NTP) as sensitive.

allow services pairs : set[addr, addr, port]
Defines a set of services that are always allowed if the connection originator is the first address and the responder
(server) the second address.

Default: empty.

Example: redefiningallow services pairs using

redef allow_services_pairs: set[addr, addr, port] += {
[ns2.mydomain.com, ns.mydomain.com, [domain, 123/tcp]] ,

} &redef;

108

would result in Bro not alerting on any TCP DNS or NTP traffic initiated from ns2.mydomain.com to
ns.mydomain.com .

flag successful service : table[port] of string
The opposite ofallow services . Defines a set of services that should always be flagged as sensitive, even
if neither the source nor the destination address is “hot.” The string value in the table gives the reason for
why the service is considered hot.Note: Bro currently does not use these explanatory messages.

Default:31337/tcp (a popular backdoor because in stylized lettering it spellsELEET) and2766/tcp (the
Solarislisten service, in our experience rarely used legitimately in wide-area traffic).

Note: Bro can flag these services erroneously when a server happens to run a different service on the same port.
For example, if you’re not running the FTP analyzer, then Browon’t know that FTP data connections using
ephemeral ports in fact belong to legitimate FTP traffic, andwill flag any that coincide with these services. A
related problem arises when a user has configured their SSH access to tunnel FTP control channels through the
FTP connection, but not the corresponding data connections(so they don’t pay the expense of encrypting the
data transfers), so again Bro can’t recognize that the ephemeral ports used for the data connections does not
reflect the presumed sensitive service.

Example: redefiningflag successful service using

redef flag_successful_service: table[port] of string += {
[1524/tcp] = "popular backdoor",

};

would result in Bro also alerting on any successful connection to a server running on TCP port 1524.

flag successful inbound service : table[port] of string
The same asflag successful service , except only applies to connections with a remote initiatorand a
local responder (determined by finding the responder address in local nets).

Default:1524/tcp (ingreslock , a popular backdoor because an attacker can place an entry for the back-
door in /etc/inetd.confusing a service name rather than a raw port number, and hence more likely to appear
legitimate to casual inspection).Note: There’s no compelling reason whyingreslock is in this table rather
than the more generalflag successful service , though it does tend to result in a few more false hits
than the others, presumably because it’s a lower port number, and hence more likely on some systems to be
chosen for an ephemeral port.ingreslock

Note: Symmetry would call forflag successful outbound service . This hasn’t been implemented in
Bro yet simply because the Bro development site has a threat model structured primarily around external threats.

terminate successful inbound service : table[port] of string
The same asflag successful inbound service , except invokesterminate connection in an

attempt to terminate the connection.

Default: empty.

Note: As for flag successful inbound service , it would be symmetric to haveterminate
successful outbound service , and also to have a more generalterminate successful
service .

109

flag rejected service : table[port] of string
Similar to flag successful service , except applies to connections that a server rejects. For example,

you could detect a particular, failed Linuxmountdattack by adding10752/tcp to this table, since that happens
to be the port used by the commonly available version of the exploit for its backdoor if the attack succeeds.Note:
You would of course likely also want to put10752/tcp in flag successful service ; or put the entire
flag rejected service table intoflag successful service , as discussed in§ 10.16, page 177.

Default: none.

Deficiency: It might make sense to haveflag attempted service , which doesn’t require that a server
actively reject the connection, but Bro doesn’t currently have this.

7.5.2 hot functions

Thehot module defines two functions for external use:

check spoof (c: connection): bool
checks the originator and responder addresses of the given connection to determine if they are

both local (and the connection is not explicitly allowed inallow spoof services). If so, and if
same local net is spoof is true, then marks the connection as “hot”.

The function also checks for a specific denial of service attack, the “Land” attack, in which the addresses are
the same and so are the ports. If so, then it generates aconn weird event with a name of"Land attack" .
It makes this check even ifsame local net is spoof is false.

Returns: true if the connection is now hot (or was upon entry), false otherwise.

check hot (c: connection, state: count): bool
checks the given connection against the various policy variables discussed above, and bumps the connection’s
hot field if it matches the policies for being sensitive, and doesnot match the various exceptions. It also uses
check spoof to see if the connection reflects a possible spoofing attack; and terminates the connection if
terminate successful service indicates so.

The caller indicates the connection’s state in the second parameter to the function, using one of the values given
in Table 7.5.2. As noted in the Table, the processing differsdepending on the state.

In general, the pattern is to make one call when the connection is first seen, eitherCONNATTEMPTED,
CONNESTABLISHED, or CONNREJECTED. If the application is one for which connections should onlybe
considered “established” after a successful pre-exchangebetween originator and responder, then a subsequent
call is made with a state ofAPPL ESTABLISHED. The idea here is to provide a way to filter out what are in fact
not really successful connections so that they are not analyzed in terms of successful service. Finally, for ser-
vices that don’t useAPPL ESTABLISHED, a call is made instead when the connection finishes for some reason,
using stateCONNFINISHED . Note: This approach delays alerting until the connection isover, which might
be later than you want, in which case you may need to editcheck hot to provide the desired functionality.

Returns: true if the connection is now hot (or was upon entry), false otherwise.

110

State Meaning Tests
CONN_ATTEMPTED Connection attempted, no reply seen.

Note that you should also use this value
for scans with indeterminant state, such
as possible stealth scans. For exam-
ple, connection half finished
does this.

check spoof .

CONN_ESTABLISHED Connection established. Also used for
connections apparently established, per
partial connection .

check spoof ,
flag successful service ,
flag successful inbound
service , allow services to ,
terminate successful
inbound service .

APPL_ESTABLISHED The connection has reached
application-layer establishment. For
example, for Telnet or Rlogin, this is
after the user has authenticated.

allow services to ,
allow service pairs ,
allow pairs ,
allow 16 net pairs , hot srcs ,
hot dsts , hot src 24nets , hot
dst 24nets .

CONN_FINISHED The connection has finished, either
cleanly or abnormally (for example,
connection reset).

Same as APPL ESTABLISHED, if
the connection exchanged non-zero
amounts of data in both directions, and
if the service wasn’t one of the ones that
generatesAPPL ESTABLISHED.

CONN_REJECTED The connection attempt was rejected by
the server.

check spoof ,
flag rejected service .

Table 7.3: Different connection states to use when callingcheck hot .

111

7.6 Thescan Analyzer

The scan analyzer detects connection attempts to numerous machines(address scanning), connection attempts to
many different services on the same machine (port scanning), and attempts to access many different accounts (pass-
word guessing). The basic methodology is to use tables to keep track of the distinct addresses and ports to which
a given host attempts to connect, and to trigger alerts when either of these reaches a specified size.Deficiency: As
currently written, the analyzer will not detect distributed scans, i.e., when many sites are used to probe individually
just a few, but together a large number, of ports or addresses.

A powerful technique that Bro potentially provides is dropping border connectivity with remote scanning sites,
though you must supply the magic script to talk with your router and effect the block. Seedrop address below for
a discussion of the interface provided.Note: Naturally, providing this capability means you mightbecome vulnerable
to denial-of-service attacks in which spoofed packets are used in an attempt to trigger a block of a site to which you
want to have access.

7.6.1 scan variables

In addition to internal variables for its bookkeeping, the analyzer provides the following redefinable variables:

report peer scan : set[count]
Generate a log message whenever a remote host (as determinedby is local addr) has attempted to connect
to the given number of distinct hosts.

Default:{ 100, 1000, 10000, }. So, for example, if a remote host attempts to connect to 3,500 different
local hosts, a report will be generated when it makes the 100th attempt, and another when it makes the 1,000th
attempt.

report outbound peer scan : set[count]
The same asreport peer scan , except for connections initiated locally.

Default:{ 1000, 10000, }.

possible port scan thresh : count
Initially, port scan detection is done based on how many different ports a given host connects to, regardless

of on which hosts. Once this threshold is reached, however, then the analyzer begins tracking ports accessed
per-server, which is important for reducing false positives.Note: The reason this variable exists is because it is
very expensive to track per-server ports accessed for everyactive host; this variable limits such tracking to only
active hosts contacting a significant number of different ports.

Default:25 .

report accounts tried : set[count]
Whenever a remote host has attempted to access a number of local accounts present in this set, generate a log
message. Each distinct username/password pair is considered a different access.

Default:{ 25, 100, 500, }.

report remote accounts tried : set[count]
The same, except for access to remote accounts rather than local ones.

Default:{ 100, 500, }.

112

skip accounts tried : set[addr]
Do not do bookkeeping for account attempts for the given hosts.

Default: empty.

skip outbound services : set[port]
Do not do outbound-scanning bookkeeping for connections involving the given services.

Default:allow services , ftp , addl web (see next item).

addl web : set[port]
Additional ports that should be considered as Web traffic (and hence skipped for outbound-scan bookkeeping).

Default:{ 81/tcp, 443/tcp, 8000/tcp, 8001/tcp, 8080/tcp, }.

skip scan sources : set[addr]
Hosts that are allowed to address-scan without complaint.

Default: scooter.pa-x.dec.com , scooter2.av.pa-x.dec.com (AltaVista crawlers; you get the
idea.)

skip scan nets 24 : set[addr, port]
/24 networks that are allowed to address scan for the given port without complaint.

Default: empty.

can drop connectivity : bool
True if the Bro has the capability of dropping connectivity,perdrop address .

Default: false.

shut down scans : set[port]
Scans of these ports trigger connectivity-dropping (if theBro is capable of dropping connectivity), unless

shut down all scans is defined (next item).

Default: empty.

shut down all scans : bool
Ignoreshut down scans and simply drop all scans regardless of service.

Default: false.

shut down thresh : count
Shut down connectivity after a host has scanned this many addresses.‘

Default:100 .

never shut down : set[addr]
Purported scans from these addresses are never shut down.

Default: the root name servers (a.root-servers.net throughm.root-servers.net).

113

7.6.2 scan functions

The standardscan script provides the following functions:

drop address (a: addr, msg: string)
Drops external connectivity to the given address and logs a notification using the given message.

Dropping connectivity requires all of the following to be true:

• can drop connectivity is true.

• The address is neither local nor a neighbor (§ 7.4.1, page 106).

• The address is not innever shut down.

If these checks succeed, then the script simply attempts to invoke a shell scriptdrop-connectivitywith a sin-
gle argument, the IP address to block. It is up to you to provide the script, using whatever interface to your
router/firewall you have available.

The function does not return a value.

check scan (c: connection, established: bool, reverse: bool): bo ol
Updates the analyzer’s internal bookkeeping on the basis ofthe new connectionc . If established is true,
then the connection was successfully established, otherwise not. Ifreverse is true, then the function should
consider the originator/responder fields in the connection’s record as reversed.Note: This last is needed for some
unusual new connections that may reflect stealth scanning. For example, when the event engine sees a SYN-ack
without a corresponding SYN, it instantiates a new connection with an assumption that the SYN-ack came from
the responder (and it missed the initial SYN either due to split routing (§ 10.9, page 177), a packet drop (§ 10.13,
page 177), or Bro having started running after the initial SYN was sent).

If the originating host’s activity matches the policy defined by the variables above, then the analyzer logs this
fact, and possibly attempts to drop connectivity to the originating host. The function also schedules an event for
24 hours in the future (or when Bro terminates) to generate a summary of the scanning activity (so if the host
continues scanning, you get a report on how many hosts it wound up scanning).Deficiency: This time interval
should be selectable.

Note: Purported scans of the FTP data port (20/tcp) or the ident service (113/tcp) are never reported
or dropped, as experience has shown they yield too many falsehits.

The function does not return a value.

7.6.3 scan event handlers

The standardscan script defines one event handler:

account tried (c: connection, user: string, passwd: string)
The given connection made an attempt to access the given username and password. Each distinct user-

name/password pair is considered a new access. The event handler generates a log message if the access matches
the logging policy outlined above.

Note:account tried events are generated bylogin andftp analyzers.

114

7.7 Theport-name Module

Theport-name utility module provides one redefinable variable and one callable function:

port names : table[port] of string
Maps TCP/UDP ports to names for the services associated withthose ports. For example,80/tcp maps to

"http" . These names are used by theconn analyzer when generating connection logs (§ 7.3, page 95).

endpoint id (h: addr, p: port): string
Returns a printable form of the given address/port connection endpoint. The format is either

<address>/< service-name> or <address>/< port-number> depending on whether the port appears in
port names.

7.8 Themt Module

Themt module is intended to provide a convenient way to run (almost) all of the analyzers. It@load ’s the following
other modules and analyzers:log , dns , hot , port-name , frag , tcp , scan , weird , finger , ident , ftp ,
login andportmapper . So you can run Bro usingbro -i in0 mt to have it analyze traffic on interfacein0 using the
above analyzers (§ 2.1.4, page 16); or you can@load mt to load in the above analyzers.

Note: Themt analyzer doesn’t loadhttp (because it can prove a very high load for many sites) nor experimental
analyzers such asstepping or backdoor .

7.9 Thelog Module

The log utility module redefines a single variable:

bro log file : file
A special Bro variable used internally to specify a file whereBro should record messages logged bylog

statements (as well as generating real-time alerts viasyslog).

Default: if the$BROID environment variable is defined, thenlog.< $BRO ID>, otherwisebro.log .

Note: This value is slightly different than that returned byopen log file , because the latter would return
log if $BROID wasn’t defined, and that name seems too easy to confuse with other uses.

See§ 6.1.38, page 84 for further discussion.

If you do not include this module, then Bro records log messages tostderr.
You can also control Bro’s log processing by defining the special functionlog hook . It takes a single argument,

msg: string , the message in a just-executedlog statement, and returns a boolean value: true if Bro should indeed
log the message, false if not. For example, Figure 7.9 shows adefinition of log hook that checks each log message
to see whether the same text has been logged before. It only logs the first instance of a message. If a message appears
at least five times, then it schedules a futurelog summary event for 5 minutes in the future; the purpose of this event
is to summarize the total number of times the message has appeared at that point in time.

115

global msg_count: table[string] of count &default = 0;

event log_summary(msg: string)
{
log fmt("(%s) %d times", msg, msg_count[msg]);
}

function log_hook(msg: string): bool
{
if (++msg_count[msg] == 1)

First time we’ve seen this message - log it.
return T;

if (msg_count[msg] == 5)
We’ve seen it five times, enough to be worth
summarizing. Do so five minutes from now,
for whatever total we’ve seen by then.
schedule +5 min { log_summary(msg) };

return F;
}

Figure 7.4: Sample definition oflog hook

116

7.10 Theactive Module

Theactive utility module provides a single, non-redefinable variablethat holds information about active connec-
tions:

active conn : table[conn id] of connection
Indexed by aconn id (Figure 7.3.1) giving the originator/responder addresses/ports, returns the connection’s
connection record. As usual, accessing the table with a non-existing index results in a run-time error, so you
should first test for the presence of the index using thein operator.

Default: empty.

This functionality is quite similar to that of theactive connection function, andDeficiency: arguably this
module should be removed in favor of the function. It does, however, provide a useful example of maintaining book-
keeping by defining additional handlers for events that already have handlers elsewhere.

7.11 Thedemux Module

Thedemux utility module provides a single function:

demux conn (id: conn id, tag: string, otag: string, rtag: string): bool
Instructs Bro to write (“demultiplex”) the contents of the connection with the givenid to a pair of files whose
names are constructed out oftag , otag , andrtag , as follows.

The originator-to-responder direction of the connection goes into a file named:

<otag>.< tag>.< orig-addr>.< orig-port>-< resp-addr>.< resp-port>

and the other direction in:

<rtag>.< tag>.< resp-addr>.< resp-port>-< orig-addr>.< orig-port>

Accordingly, tag can be used to associate a unique label with the pair of files, while otag and rtag provide
distinct labels for the two directions.

If Bro is already demuxing the connection, or if the connection is not active, then nothing happens, and the
function returns false. Otherwise, it returns true.

Bro places demuxed streams in a directory defined by the redefinable globaldemux dir , which defaults in the
usual fashion toopen log file("xscript") .

Deficiency: Experience has shown that it would be highly convenient if Bro would demultiplex theentireconnection
contents into the files, instead of just the part of the connection seen subsequently after the call todemux conn . One
way to do this would be fordemux conn to offset the contents in the file by the current stream position, and then to
invoke a utility tool that goes through the Bro output trace file (§ 10.2, page 176) and copies the contents up to the
current stream position to the front of the file. This utilitytool might even be another instance of Bro running with
suitable arguments.

117

type dns_mapping: record {
creation_time: time; # When the mapping was created.

req_host: string; # The hostname in the request, if any.
req_addr: addr; # The address in the request, if any.

valid: bool; # Whether we received an answer.
hostname: string; # The hostname in the answer, or "<none>".
addrs: set[addr]; # The addresses in the answer, if any.

};

Figure 7.5: Definition of thedns mapping record.

7.12 Thedns Module

Thedns module deals with Bro’s internal mapping of hostnames to/from IP addresses.Deficiency: There is no DNS
protocol analyzer available at present.Furthermore,Deficiency: the lookup mechanisms discussed here are not avail-
able to the Bro script writer, other than implicitly by usinghostnames in lieu of addresses in variable initializations
(§ 10.19, page 178).

The module’s function is to handle different events that canoccur when Bro resolves hostnames upon startup. Bro
maintains its own cache of DNS information which persists across invocations of Bro on the same machine and by the
same user. The role of the cache is to allow Bro to resolve hostnames even in the face of DNS outages; the philosophy
is that it’s better to use old addresses than none at all, and this helps harden Bro against attacks in which the attacker
causes DNS outages in order to prevent Bro from resolving particular sensitive hostnames (e.g.,hot srcs). The
cache is stored in the file “.bro-dns-cache ” in the user’s home directory. You can delete this file whenever you
want, for example to purge out old entries no longer needed, and Bro will recreate it next time it’s invoked using-P .

Currently, all of the event handlers are invoked uponcomparingthe results of a new attempt to look up a name or
an address versus the results obtained thelast timeBro did the lookup. When Bro looks up a name for the first time,
no events are generated.

Also, Bro currently only looks up hostnames to map them to addresses. It does not perform inverse lookups.

7.12.1 Thedns mapping record

All of the events handled by the module include at least one record of DNS mapping information, defined by the
dns mapping type shown in Figure 7.12.1. The corresponding fields are:

creation time
When the mapping was created.

req host
The hostname looked up, or an empty string if this was not a hostname lookup.

req addr
The address looked up (reverse lookup), or0.0.0.0 if this was not an address lookup.

118

valid
True if an answer was received for a lookup (even if the answerwas that the request name or address does not
exist in the DNS).

hostname
The hostname answer in response to an address lookup, or the string "<none>" if an answer was received but
it indicated there was no PTR record for the given address.

addrs
A set of addresses in response to a hostname lookup. Empty if an answer was received but it indicated that there
was no A record for the given hostname.

7.12.2 dns variables

The modules provides one redefinable variable:

dns interesting changes : set[string]
The different DNS events have names associated with them. Ifthe name is present in this set, then the event

will be logged, otherwise not.

One exception to this list is that DNS changes involving the loopback address127.0.0.1 are always consid-
ered log-worthy, since they may reflect DNS corruption.

Default:{ "unverified", "old name", "new name", "mapping", }.

7.12.3 dns event handlers

The DNS module supplies the following event handlers:

dns mapping valid (dm: dns mapping)
The given request was looked up and it was identical to its previous mapping.

dns mapping unverified (dm: dns mapping)
The given request was looked up but no answer came back.

dns mapping new name (dm: dns mapping)
In the past, the given address did not resolve to a hostname; this time, it did.

dns mapping lost name (dm: dns mapping)
In the past, the given address resolved to a hostname; now, that name has gone away. (An answer was received,
but it stated that there is no hostname corresponding to the given address.)

dns mapping name changed (old dm: dns mapping, new dm: dns mapping)
The name returned this time for the given address differs from the name returned in the past.

dns mapping altered (dm: dns mapping, old addrs: set[addr], new addrs:
set[addr])
The addresses associated with the given hostname have changed. Those inold addrs used to be part of the
set returned for the name, but aren’t any more; while those innew addrs didn’t used to be, but now are. There
may also be some unchanged addresses, which are those indm$addrs but not innew addrs .

119

7.13 Thefinger Analyzer

The finger analyzer processes traffic associated with the Finger service [RFC1288]. Bro instantiates afinger
analyzer for any connection with service port79/tcp (if you @load the finger analyzer in your script, or define your
own finger request or finger reply handlers, of course).

The analyzer uses a capture filter of “port finger ” (§ 7.1.2, page 93).
In the past, attackers often used Finger requests to obtain information about a site’s users, and sometimes to

launch attacks of various forms (buffer overflows, in particular). In our experience, exploitation of the service has
greatly diminished over the past years (no doubt in part to the service being increasingly turned off, or prohibited by
firewalls). Now it is only rarely associated with an attack.

7.13.1 finger variables

The standard script defines two redefinable variables:

hot names : set[string]
A list of usernames that should be considered sensitive (log-worthy) if included in a Finger request.

Default: { "root", "lp", "uucp", "nuucp", "demos", "operator", "sync ",
"guest", "visitor", }.

max request length : count
The largest reasonable request size (used to flag possible buffer overflow attacks). Bro marks a connection as

“hot” if its request exceeds this length, and truncates its logging of the request to this many bytes, followed by
"..." .

Default:80 .

7.13.2 finger event handlers

The standard script defines one event handler:

finger request (c: connection, request: string, full: bool)
Invoked upon connectionc having made the requestrequest . Thefull flag is true if the request included
the “long format” option (which the event engine will have removed from the request).

The standard script flags long requests and truncates them asnoted above, and then checks whether the request
is for a name inhot names. It then formats the request either by placing double quotation marks around it, or,
if the request was empty—indicating a request for information on all users—the request is changed to the string
ALL with no quotes around it.

If the originator already made a request, then this additional request is placed in parentheses (though multiple
requests violate the Finger protocol). If the request was for the full format, then the text “(/W) ” is appended
to the request. Finally, the request is appended to the connection’saddl field.

The event engine generates an additional event that the predefinedfinger script does not handle:

finger reply (c: connection, reply line: string)
Generated for each line of text sent in response to the originator’s request.

120

7.14 Thefrag Module

The frag utility module simply refines the capture filter (§ 7.1.2, page 93) so that Bro will capture and reassemble
IP fragments. Bro reassembles any fragments it receives; but normally it doesn’t receive any, except the beginnings of
TCP fragments (see thetcp module), and UDP port 111 (per theportmapper module).

So, to make Bro do fragment reassembly, you simply use “@load frag ”. It effects this by adding:

(ip[6:2] & 0x3fff != 0) and tcp

to the filter. The first part of this expression matches all IP fragments, while the second restricts those matched to TCP
traffic. We wouldlike to use:

(ip[6:2] & 0x3fff != 0) and (tcp or udp port 111)

to also include portmapper fragments, but that won’t work—the port numbers will only be present in the first fragment,
so the packet filter won’t recognize the subsequent fragments as belonging to a UDP port 111 packet, and will fail to
capture them.

Note: Alternatively, we might be tempted to use “(tcp or udp) ” and so captureall UDP fragments, including
port 111. This would work in principle, but in practice can capture very high volumes of traffic due to NFS traffic,
which can send all of its file data in UDP fragments.

7.15 Thehot-ids Module

Thehot-ids module defines a number of redefinable variables that specifyusernames Bro should consider sensitive:

forbidden ids : set[string]
lists usernames that should never be used. If Bro detects useof one, it will attempt to terminate the corresponding
connection.

Default: { "uucp", "daemon", "rewt", "nuucp", "EZsetup", "OutOfBox" ,
"4Dgifts", "ezsetup", "outofbox", "4dgifts", "sgiweb", }. All of these correspond to
accounts that some systems have enabled by default (with well-known passwords), except for"rewt" , which
corresponds to a username often used by (weenie) attackers.

Deficiency: The repeated definitions such as"EZsetup" and"ezsetup" reflect that this variable is aset
and not apattern . Consequently, the exact username must appear in it (with a pattern, we could use character
classes to match both upper and lower case).

forbidden ids if no password : set[string]
Same asforbidden ids except only considered forbidden if the login succeeded with an empty password.

Default:"lp" , a default passwordless IRIX account.

forbidden id patterns : pattern
A pattern giving user ids that should be considered forbidden. Deficiency: This pattern is currently only used
to check Telnet/Rlogin user ids, not ids seen in other contexts, such as FTP sessions.

Default: /(y[o0]u)(r|ar[e3])([o0]wn.*)/ , a particularly egregious style of username of which
we’ve observed variants in different break-ins.

121

type ftp_session_info: record {
id: count; # unique number associated w/ session
user: string; # username, if determined
request: string; # pending request or requests
num_requests: count; # count of pending requests
request_t: time; # time of request
log_if_not_denied: bool; # unless code 530 on reply, log it
log_if_not_unavail: bool; # unless code 550 on reply, log it
log_it: bool; # if true, log the request(s)

};

Figure 7.6: Definition of theftp session info record.

always hot ids : set[string]
A list of usernames that should always be considered sensitive, though not necessarily so sensitive that they

should be terminated whenever used.

Default:{ "lp", "warez", "demos", forbidden ids, }. The"lp" and"demos" accounts are
specified here rather thanforbidden ids because it’s possible that they might be used for legitimateac-
counts."warez" (for “wares”, i.e., bootlegged software) is listed becauseits use likely constitutes a policy
violation, not a security violation.

Note: forbidden ids is incorporated intoalways hot ids to avoid replicating the list of particularly
sensitive ids by listing it twice and risking inconsistencies.

hot ids : set[string]
User ids that generate alerts if the user logs in successfully.

Default: { "root", "system", always hot ids, }. The ones included in addition to
always hot ids are only considered sensitive if the user logs in successfully.

7.16 Theftp Analyzer

The ftp analyzer processes traffic associated with the FTP file transfer service [RFC959]. Bro instantiates anftp
analyzer for any connection with service port21/tcp , providing you have loaded theftp analyzer, or defined a
handler forftp request or ftp reply .

The analyzer uses a capture filter of “port ftp ” (§ 7.1.2, page 93). It generates summaries of FTP sessions;
looks for sensitive usernames, access to sensitive files, and possible FTP “bounce” attacks, in which the host specified
in a “PORT” or “ PASV” directive does not correspond to the host sending the directive; or in which a different host
than the server (client) connects to the endpoint specified in aPORT(PASV) directive.

7.16.1 Theftp session info record

The main data structure managed by theftp analyzer is a collection offtp session info records, where the
record type is shown in Figure 7.16.1. The corresponding fields are:

122

id
The unique session identifier assigned to this session. Sessions are numbered starting at1 and incrementing

with each new session.

user
The username associated with this session (from the initialFTP authentication dialog), or an empty string if not
yet determined.

request
The pending request, if the client has issued any. Ordinarily there would be at most one pending request, but

a client can in fact send multiple requests to the server all at once, and an attacker could do so attempting to
confuse the analyzer into mismatching responses with requests, or simply forgetting about previous requests.

num requests
A count of how many requests are currently pending.

request t
The time at which the pending request was issued.

log if not denied
If true, then when the reply to the current request comes in, Bro should log it, unless the reply code is530

(“denied ”).

log if not unavail
If true, then when the reply to the current request comes in, Bro should log it, unless the reply code is550

(“unavail ”).

log it
If true, then when the reply to the current request comes in, Bro should log it.

7.16.2 ftp variables

The standard script defines the following redefinable variables:

ftp guest ids : set[string]
A set of usernames associated with publicly accessible “guest” services. Bro interprets guest usernames as

indicating Bro should use the authenticationpasswordas the effective username.

Default:{ "anonymous", "ftp", "guest", }.

ftp skip hot : set[addr, addr, string]
Entries indicate that a connection from the first given address to the second given address, using the given string
username, should not be treated as hot even if the username issensitive.

Default: empty.

Example: redefiningftp skip hot using

redef ftp_skip_hot: set[addr, addr, string] += {
[[bob1.dsl.home.net, bob2.dsl.home.net], bob.work.com , "root"],

};

123

972499885.784104 #26 131.243.70.68/1899 > 64.55.26.206/ ftp start
972499886.685046 #26 response (220 tuvok.ooc.com FTP serv er

(Version wu-2.6.0(1) Fri Jun 23 09:17:44 EDT 2000) ready.)
972499886.686025 #26 USER anonymous/IEUser@ (logged in)
972499887.850621 #26 TYPE I (ok)
972499888.421741 #26 PASV (227 64.55.26.206/2427)
972499889.493020 #26 SIZE /pub/OB/4.0/JOB-4.0.3.zip (21 3 1675597)
972499890.135706 #26 *RETR /pub/OB/4.0/JOB-4.0.3.zip, A BOR (complete)
972500055.491045 #26 response (225 ABOR command successfu l.)

Figure 7.7: Example of FTP log file entries for a single FTP session.

would result in Bro not alerting on FTP connections as user"root" from eitherbob1.dsl.home.net or
bob2.dsl.home.net to the server running onbob.work.com .

ftp hot files : pattern
Bro matches the argument given in each FTP file manipulation request (RETR, STOR, etc.) against this pattern
to see if the file is sensitive. If so, and if the request succeeds, then the access is logged.

eggdrop Default: a pattern that matches various flavors of password files, plus any string witheggdrop in it.
Note: Eggdrop is an IRC management tool often installed by certain attackers upon a successful break-in.

ftp not actually hot files : pattern
A pattern giving exceptions toftp hot files . It turns out that a pattern like/passwd/ generates a lot of
false hits, such as frompasswd.c (source for thepasswdutility; this can turn up in FTP sessions that fetch
entire sets of utility sources usingMGET) or passwd.html (a Web page explaining how to enter a password
for accessing a particular page).

Default:/(passwd|shadow).*\.(c|gif|htm|pl|rpm|tar|zip)/ .

ftp hot guest files : pattern
Files that guests should not attempt to access.

Default:.rhosts and.forward .

skip unexpected : set[addr]
If a new host (address) unexpectedly connects to the endpoint specified in aPORTor PASVdirective, then if

either the original host or the new host is in this set, no message is generated. The idea is that you can specify
multi-homed hosts that frequently show up in your FTP traffic, as these can generate innocuous warnings about
connections from unexpected hosts.

Default: somehp.com hosts, as an example. Most are specified as raw IP addresses rather than hostnames,
since the hostnames don’t always consistently resolve.

skip unexpected net : set[addr]
The same asskip unexpected , except addresses are masked to /24 and /16 before looked up in this set.

Default: empty.

124

In addition,ftp log holds the name of the FTP log file to which Bro writes FTP session summaries. It defaults
to open log file("ftp") .

Figure 7.16.2 shows an example of what entries in this file look like. Here we see a transcript of the 26th FTP
session seen since Bro started running. The first line gives its start time and the participating hosts and ports. The
next line (split across two lines above for clarity) gives the server’s welcome banner. The client then logged in as
user “anonymous ”, and because this is one of the guest usernames, Bro recorded their password too, which in this
case was “IEUser@ ” (a useless string supplied by their Web browser). The server accepted this authentication, so the
status on the line is “(logged in) ”.

The client then issues a request for the Image file type, to which the server agreed. Next they issued aPASV
directive, and received a response instructing them to connect to the server on port2427/tcp for the next transfer. At
this point, after issuing aSIZE directive (to which the server returned 1,675,597 bytes), they sendRETRto fetch the
file /pub/OB/4.0/JOB-4.0.3.zip. However, before the transfer completed, they issuedABOR, but the transfer finished
before the server processed the abort, so the log shows a status of (completed) . Furthermore, because the client
issued two commands without waiting for an intervening response, these are shown together in the log file, and the line
marked with a “* ” so it draws the eye. Finally, because Bro paired up the(completed) with the multi-request line,
it then treats the response to theABORcommand as a reply by itself, showing in the last line that theserver reported it
successfully carried out the abort.

The corresponding lines in thered file look like:

972499885.784104 565.836 ftp 118 427 131.243.70.68 64.55. 26.206
RSTO L #26 anonymous/IEUser@

972499888.984116 165.098 ftp-data ? 1675597 131.243.70.6 8 64.55.26.206
RSTO L

The first line summarizes the FTP control session (over whichthe client sends its requests and receives the server’s
responses). It includes anaddl annotation of “#26 anonymous/IEUser@ ”, summarizing the session number (so
you can find the corresponding records in theftp log file) and the authentication information.

The second line summarizes the single FTP data transfer, of 1,675,597 bytes. The amount of data sent by the client
for this connection is shown as unknown because the client aborted the connection with a RST (hence the stateRSTO).
For connections that Bro does not look inside (such as FTP data transfers), it learns the amount of data transferred
from the sequence numbers of the SYN and FIN connection control packets, and can’t (reliably) learn them for the
sender of a RST. (It can for the receiver of the RST.)

They also aborted the control session (again, stateRSTO), but in this case, Bro captured all of the packets of the
session, so it could still assign sizes to both directions.

7.16.3 ftp functions

The standardftp script provides one function for external use:

is ftp data conn (c: connection): bool
Returns true if the given connection matches one we’re expecting as the data connection half of an FTP session.
Note: This function is not idempotent: if the connection matches an expected one, then Bro updates its state such
that that connection is no longer expected. It also logs a discrepancy if the connection appears to be usurping
another one that generated either a “PORT” or a “ PASV” directive.

Also returns true if the source port is20/tcp and there’s currently an FTP session active between the originator
and responder, in case for some reason Bro’s bookkeeping is inconsistent.

125

7.16.4 ftp event handlers

The standard script handles the following events:

ftp request (c: connection, command: string, arg: string)
Invoked upon the client side of connectionc having made the requestcommandwith the argumentarg .

The processing depends on the particular command:

USER
Specifies the username that the client wishes to use for authentication. If it is sensitive—inhot ids
(which theftp analyzer accesses via a@load of hot-ids)—then the analyzer flags the FTP session as
log-worthy. In addition, if the username is inforbidden ids , then the analyzer terminates the session.
The analyzer also updates the connection’saddl field with the username.

PASS
Specifies the password to use for authentication.
If the password is empty and the username appears inforbidden ids if no password (also from
thehot-ids analyzer), then the analyzer terminates the connection.
If the username corresponds to a guest account (ftp guest ids), then the analyzer updates the con-
nection’saddl field with the password as additional account information. Otherwise, it generates an
account tried event to facilitate detection of password guessing.

PORT
Instructs the FTP server to connect to the given IP address and port for delivery of the next FTP data
item. The analyzer first checks the address/port specifier for validity. If valid, it will generate an alert if
either the address specified in the directive does not match that of the client, or if the port corresponds to
a “privileged” port, i.e., one in the range 0–1023. Finally,it establishes state so thatis ftp data conn
can identify a subsequent connection corresponding to thisdirective as belonging to this FTP session.

ACCT
Specifies additional accounting information associated with a session, which the analyzer simply adds to
the connection’saddl field.

APPE, CWD, DELE, MKD, RETR, RMD, RNFR, RNTO, STOR, STOU
All of these manipulate files (and directories). The analyzer checks the filename against the policies to
see if it is sensitive in the context of the given username (i.e., guest or non-guest), and, if so, marks the
connection to generate an alert unless the operation fails.The analyzer also checks for an excessively long
filename, currently by checking its length against aDeficiency: hardwired maximum of 250 bytes.

ftp reply (c: connection, code: count, msg: string, cont resp: bool)
Invoked upon the server side of connectionc having replied to a request using the given status code and text

message.cont resp is true if the reply line is tagged as being continued to the next line. The analyzer only
processes requests when the last line of a continued reply isreceived.

The analyzer checks the reply against any expected for the connection (for example, “log if not denied ”)
and generates alerts accordingly. If the reply correspondsto a PASVdirective, then it parses the address/port
specification in the reply and generates alerts in an analogous fashion as done by theftp request handler
for PORTdirectives.

Finally, if the reply is not one that the analyzer is hardwired to skip (code150 , used at the beginning of a data
transfer, and code331 , used to prompt for a password), then it writes a summary of the request and reply to the

126

972482763.371224 %1596 start 200.241.229.80 > 131.243.2. 12
%1596 GET /ITG.hm.pg.docs/dissect/portuguese/dissect. html
%1596 GET /vfrog/bottom.icon.gif
%1596 GET /vfrog/top.icon.gif
%1596 GET /vfrog/movies/off.gif
%1596 GET /vfrog/new.frog.small.gif

Figure 7.8: Example of HTTP log file entries for a single HTTP session.

FTP log file (§ 7.16.2, page 125). Also, if the reply is an “orphan” (there was no corresponding request, perhaps
because Bro started up after the request was made), then the reply is summarized in the log file by itself.

The standardftp script defines one other handler, an instance ofconnection finished used to flush FTP
session information in case the session terminates abnormally and no reply is seen to the pending request(s).

7.17 Thehttp Analyzer

Thehttp analyzer processes traffic associated with the Hyper Text Transfer Protocol (HTTP) [RFC1945, RFC2616],
the main protocol used by the Web. Bro instantiates anhttp analyzer for any connection with service port80/tcp ,
providing you have loaded thehttp analyzer, or defined a handler forhttp request . It also instantiates an ana-
lyzer for service ports8080/tcp and8000/tcp , as these are often also used for Web servers.

The analyzer uses a capture filter of “tcp dst port 80 or tcp dst port 8080 or tcp dst
port 8000 ” (§ 7.1.2, page 93).Note: This filter excludes traffic sent by an HTTP server (thatwould be matched
by tcp src port 80 , etc.), because Deficiency: Bro doesn’t yet have an analyzerfor HTTP replies.It generates
summaries of HTTP sessions (connections between the same client and server) and looks for access to sensitive URIs
(effectively, URLs).

7.17.1 http variables

sensitive URIs : pattern
Any HTTP method (e.g.,GET, HEAD, POST) specifying a URI that matches this pattern is flagged as sensitive.

Default: URIs with/etc/passwd or /etc/shadow embedded in them, or/cfdocs/expeval (used in
some Cold Fusion exploits).Note: This latter generates some false hits; it’s mainly included just to convey the
notion of looking for direct attacks rather than attacks used to exploit sensitive files like the first ones.

Deficiency: It would be very handy to have variables providing hooks for more context when considering
whether a particular access is sensitive, such as whether the request was inbound or outbound.

sensitive post URIs : pattern
Any POSTmethod specifying a URI that matches this pattern is flagged as sensitive.

Default: URIs withwwwroot embedded in them.

In addition,http log holds the name of the HTTP log file to which Bro writes HTTP session summaries. It
defaults toopen log file("http") .

127

Figure 7.17.1 shows an example of what entries in this file look like. Here we see a transcript of the 1596th HTTP
session seen since Bro started running. The first line gives its start time and the participating hosts. The next five lines
all correspond toGETmethods retrieving different items from the Web server.Deficiency: Bro can’t log whether the
retrievals succeeded or failed because it doesn’t yet have an HTTP reply analyzer.

The corresponding lines in thered file look like:

972482762.872695 481.551 http 441 5040 131.243.2.12 200.2 41.229.80
S3 X %10596

972482764.686470 18.7611 http 596 7712 131.243.2.12 200.2 41.229.80
S3 X %10596

972482764.685047 ? http 603 2959 131.243.2.12 200.241.229 .80
S1 X %10596

That there are three rather than five reflects(i) that the client used persistent HTTP, and so didn’t need one connection
per item, but also(ii) the client used three parallel connections (the maximum thestandard allows is only two) to fetch
the items more quickly. As with FTP sessions, the%10596 addl annotation lets you correlate thered entries with
thehttp log entries.

Note: All three of the connections wound up in unusual states. The first two are in stateS3, which, as indicated by
Table 7.3.6 means that the responder (in this case, the Web server) attempted to close the connection, but their was no
reply from the originator. The last is in stateS1, indicating that neither side attempted to close the connection (which
is why no duration is listed for the connection).

7.17.2 http event handlers

The standard HTTP script defines one event handler:

http request (c: connection, request: string, URI: string)
Invoked whenever the client side of the given connection generates an HTTP request.request gives the HTTP
method andURI the associated resource. The analyzer matches the URI against the ones defined as sensitive,
as given above.

Deficiency: As mentioned above, the event engine does not currently generate anhttp reply event. This is for
two reasons: first, the HTTP request stream is much lower volume than the HTTP reply stream, and I was interested
in the degree to which Bro could get away without analyzing the higher volume stream. (Of course, this argument is
shallow, since one could control whether or not Bro should analyze HTTP replies by deciding whether or not to define
an http reply handler.) Second, matching HTTP replies in their full generality involves a lot of work, because
the HTTP standard allows replies to be delimited in a number of ways. That said, most of the work for implementing
http reply is already done in the event engine, but it is missing testingand debugging.

7.18 Theident Analyzer

Theident analyzer processes traffic associated with the Identification Protocol [RFC1413], which provides a simple
service whereby clients can query Ident servers to discoveruser information associated with an existing connection
between the server’s host and the client’s host. Bro instantiates anident analyzer for any connection with ser-
vice port113/tcp , providing you have loaded theident analyzer, or defined a handler forident request ,
ident reply , or ident error .

128

The analyzer uses a capture filter of “tcp port 113 ” (§ 7.1.2, page 93). Theident reply handler annotates
theaddl field of the connection for which the Ident client made its query with the user information returned in the
reply. It also checks the user information against sensitive usernames, because a match indicates that the connection in
the Ident query was initiated by a possibly-compromised account.

7.18.1 ident variables

The standard script defines the following pair of redefinablevariables:

hot ident ids : set[string]
usernames to flag as sensitive if they appear in an Ident reply.

Default:always hot ids (§ 7.15, page 122).

hot ident exceptions : set[string]
usernames not to consider sensitive even if they appear inhot ident ids .

Default:{ "uucp", "nuucp", "daemon", }. These usernames are exceptions because daemons some-
times run with the given user ids and their use is often innocuous.

7.18.2 ident event handlers

The standard script handles the following events:

ident request (c: connection, lport: port, rport: port)
Invoked when a client request arrives on connectionc , querying about the connection from local portlport
to remote portrport , where local and remote are relative to the client.

ident reply (c: connection, lport: port, rport: port, user id: string, system:
string)
Invoked when a server replies to an Ident request.lport and rport are again the local and remote ports

(relative to the client) of the connection being asked about. user id is the user information returned in
the Ident server’s reply, andsystem is information regarding the operating system (the Ident specification
[RFC1413] does not further standardize this information).

The handler annotates the queried connection with the user information, which it also checks against
hot ident ids andhot ident exceptions as discussed above. At present, it does nothing with the
system information.

ident error (c: connection, lport: port, rport: port, line: strin g)
Invoked when the given request yielded an error reply from the Ident server. The handler annotates the connec-
tion with ident/< error>, whereerror is the text given inline .

129

7.19 Thelogin Analyzer

The login analyzer inspects interactive login sessions to extract username and password information, and monitors
user keystrokes and the text returned by the login server. Itis one of the most powerful Bro modules for detecting
break-ins to Unix systems because of the ability to look for particular commands that attackers often execute once
they have penetrated a Unix machine.

The analyzer is generic in the sense that it applies to more than one protocol. Currently, Bro instantiates alogin
analyzer for both Telnet [RFC854] and Rlogin [RFC1282] traffic. In principle, it could do the same for other protocols
such as SSH [YKSRL00] or perhaps X11 [RFC1013], if one could write the corresponding elements of the event
engine to decrypt the SSH session (naturally, this would require access to the encryption keys) or extract authentication
information and keystrokes from the X11 event stream.Note: The analyzer does an exceedingly limited form of SSH
analysis; seehot ssh orig ports .

For Telnet, the event engine knows how to remove in-band Telnet option sequences [RFC855] from the text stream,
and does not deliver these to the event handlers, except for afew options that the engine analyzes in detail (such as
attempts to negotiate authentication). Unfortunately, the Telnet protocol does not include any explicit marking of
username or password information (unlike the FTP protocol,as discussed in§ 7.16, page 122). Consequently, Bro
employs a series of heuristics that attempt to extract the username and password from the authentication dialog the
session is presumed to begin with. The analysis becomes quite complicated due to the possible use of type-ahead
and editing sequences by the user, plus the possibility thatthe user may be an attacker who attempts to mislead the
heuristics in order to disguise the username they are accessing.

Analyzing Rlogin is nominally easier than analyzing Telnetbecause Rlogin has a simpler in-band option scheme,
and because the Rlogin protocol explicitly indicates the username in the initial connection dialog. However, this last
is not actually a help to the analyzer, because for most Rlogin servers, if the initial username fails authentication (for
example, is not present in the.rhosts file local to the server), then the server falls back on the same authentication
dialog as with Telnet (prompting for username and then password, or perhaps just for a password to go with the
transmitted username). Consequently, the event engine employs the same set of heuristics as for Telnet.

Each connection processed by the analyzer is in a distinct state: user attempting to authenticate, user has success-
fully authenticated, analyzer is skipping any further processing, or the analyzer is confused (§ 7.19.1, page 131). You
can find out the state of a given connection usingget login state .

The analyzer uses a capture filter of “tcp port 23 or tcp port 513 ” (§ 7.1.2, page 93). It anno-
tates each connection with the username(s) present in the authentication dialog. If the username was authenticated
successfully, then it encloses the annotation in quotes. Ifthe authentication failed, then the name is marked as
failed/< username>. So, for example, if user “smith” successfully authenticates, then the connection’saddl field
will have "smith" appended to it:

931803523.006848 254.377 telnet 324 8891 1.2.3.4 5.6.7.8 S F L "smith"

while if “smith” failed to authenticate, the report will look like:

931803523.006848 254.377 telnet 324 8891 1.2.3.4 5.6.7.8 S F L fail/smith

and if they first tried as “smith” and failed, and then succeeded as “jones”, the record would look like:

931803523.006848 254.377 telnet 324 8891 1.2.3.4 5.6.7.8 S F L fail/smith "jones"

Note: The event engine’s heuristics can sometimes get out ofsynch such that it interprets a password as a user-
name; in addition, users sometimes type their password whenthey should instead enter their username. Consequently,
the connection logs sometimes include passwords in the annotations, and so should be treated as very sensitive infor-
mation (e.g., not readable by any user other than the one running Bro).

130

7.19.1 login analyzer confusion

Because there is no well-defined protocol for Telnet authentication (or Rlogin, if the initial.rhosts authentication
fails), thelogin analyzer employs a set of heuristics to detect the username,password, and whether the authentication
attempt succeeded. All in all, these heuristics work quite well, but it is possible for them to become confused and reach
incorrect conclusions.

Bro attempts to detect such confusion. If it does, then it generates alogin confused event, after which the
event engine will no longer attempt to follow the authentication dialog. In particular, it willnot generate subsequent
login failure or login success events. Thelogin confused event includes a string describing the type
of confusion, using one of the values given in Table 7.19.1.

7.19.2 login variables

The standard script defines a large number of variables for refining the analysis policy:

input trouble : pattern
lists patterns that the analyzer should flag if they appear inthe user’s input (keystroke) stream.

The analyzer searches for these patterns both in the raw texttyped by the user and the same lines after applying
editingusing theedit function twice: once with interpretingBS(ctrl-H) as delete-one-character, and once with
DEL as the edit character. If any of these matches, then the analyzer considers the pattern to have matched.

eggdrop Default: a pattern matching occurrences of the strings “rewt ”, “ eggdrop ”, “ loadmodule ”, or
“ /bin/eject ”. The first of these is a popular username attackers use for root backdoor accounts. The second
reflects that one prevalent class of attackers are devotees of Internet Relay Chat (IRC), who frequently upon
breaking into an account install the IRCeggdrop utility.

edited input trouble : pattern
is the same asinput trouble except the analyzer only checks the edited user input against the pattern, not
the raw input (see above).

This variable is provided so you can specify patterns that can occur innocuously as typos; whenever the user
corrects the typo before terminating the line, the pattern won’t match, because it won’t be present in the edited
version of the line. In addition, for matches to these patterns, the analyzerdelaysreporting the match until
it sees the next line of output from the server. It then includes both the line that triggered the match and the
corresponding response from the server, which makes it easyfor a human inspecting the logs to tell if the
occurrence of the pattern was in fact innocuous.

Here’s an example of an innocuous report:

936723303.760483 1.2.3.4/21550 > 5.6.7.8/telnet
input "cd ..." yielded output "ksh: ...: not found."

It was flagged because the user’s input included “... ”, a name commonly used by attackers to surreptitiously
hide a directory containing their tools and the like. However, we see from the Telnet server’s response that this
was not actual access to such a directory, but merely a typingmistake.

On the other hand:

937528764.579039 1.2.3.4/3834 > 5.6.7.8/telnet
input "cd ..." yielded output "maroon# ftp sunspot.sunspot .noao.edu "

131

Type of confusion Meaning
"excessive typeahead" The user has typed ahead 12 or more lines.Deficiency: The upper bound

should be adjustable.
"extra repeat text" The user has entered more than one VMS repeat sequence (an es-

cape followed by “[A ”) on the same line.Note: Bro determines
that a login session involves a VMS server if the server prompts with
“ "Username:" ”. It then interprets VMS repeat sequences as indicat-
ing it should replace the current line with the previous line.

"multiple USERs" The user has specified more than one username using the$USERenvi-
ronment variable.

"multiple login prompts" The analyzer has seen several login prompts on the same line,and has
not seen a corresponding number of lines typed ahead previously by the
user.

"no login prompt" The analyzer has seen 50 lines sent by the server without any of them
matchinglogin prompts . Deficiency: The value of 50 should be ad-
justable.

"no username" The analyzer is generating an event after having already seen a login
failure, but the user’s input has not provided another username to include
with the event.Note: If the analyzer’s heuristics indicate it’s okay that
no new username has been given, such as when the event is generated
due to one connection endpoint closing the connection, thenit instead
uses the username<none> .

"no username2" The analyzer saw an additional password prompt without seeing an in-
tervening username, and it has no previous username to reuse.

"non empty multi login" The analyzer saw multiple adjacent login prompts, with an apparently
ignored intervening username typed-ahead between them.

"possible login ploy" The client sent text that matches one of the patterns reflecting text usually
sent by the server. This form of confusion can reflect an attacker attempt-
ing to evade the monitor. For example, the client may have sent the text
“ login: ” as a username so that when echoed back by the server, the
analyzer would misinterpret it as reflecting another login prompt from
the server.

"repeat without username" The user entered a VMS repeat sequence but there is no username to
repeat. (Seeextra repeat text for a discussion of the analyzer’s
heuristics for dealing with VMS servers.)

"responder environment" The responder (login server) has signaled a set of environment variables
to the originator (login client). This is in the opposite direction as to what
makes sense.

"username with embedded repeat" The line repeated by a VMS server in response to a repeat sequence itself
contains a repeat sequence.

Table 7.4: Different types of confusion thatlogin analyzer can report.

132

shows a problem—the lines returned by the server was a root prompt (“maroon# ”), to which the user issued a
command to access a remote FTP server.

Deficiency: The analyzer should decouple the notion of waiting to receive the server’s reply from the notion
of matching only the edited form of the line; there might be raw inputs for which it is useful to see the server’s
response, and edited inputs for which the server’s responseis unimportant in terms of knowing that the input
spells trouble.

Default: the pattern

/[\t]*cd[\t]+(([’"]?\.\.\.)|(["’](\.[ˆ"’]*)[\t]))/

which looks for a “cd ” command to either a directory beginning with “... ” (optionally quoted by the user) or
a directory name beginning with “. ” that is quoted and includes an embedded blank or tab.

output trouble : pattern
lists patterns that the analyzer should flag if they occur in the output sent by the login server back to the user.

PATHUTMP smashdu.c Default: the pattern

/ˆ-r.s.*root.*\/bin\/(sh|csh|tcsh)/
| /Jumping to address/
| /smashdu\.c/
| /PATH_UTMP/
| /Log started at =/
| /www\.anticode\.com/
| /smurf\.c by TFreak/
| /Trojaning in progress/
| /Super Linux Xploit/

The first of these triggers any time the user inspects with thels utility an executable whose pathname ends in
/bin/ followed by one of the popular command shells, and thels output shows that the command shell has
been altered to be setuid to root. The remainder match eitherthe output generated by some popular exploit tools
(for example, “Jumping to address ”, present in many buffer overflow exploit tools), exploit tool names
(“smashdu.c ”), text found within the tool source code (“smurf.c by TFreak ”), or URLs accessed (say
via thelynxor fetchutilities) to retrieve attack software (“www.anticode.com ”).

backdoor prompts : pattern
lists patterns that the analyzer should flag if they are seen as the first line sent by the server to the user, because
they often correspond with backdoors that offer a remote user immediate command shell access without having
to first authenticate.

Default: the pattern “/ˆ[!-˜]*(?)[#%$] / ”, which matches a line that begins with a series of printable,
non-blank characters and ends with a likely prompt character, with a blank just after the prompt character and
perhaps before it.

non backdoor prompts : pattern
lists patterns that if a possible backdoor prompt also matches, then the analyzer should not consider the server
output as indicating a backdoor prompt. Used to limit false positives forbackdoor prompts .

Default: the pattern “/ˆ *#.*#/ ”, which catches lines with more than one occurrence of a#. Some servers
generate such lines as part of their welcome banner.

133

hot terminal types : pattern
lists “magic” terminal types sometimes used by attackers toaccess backdoors. Both Telnet and Rlogin have

mechanisms for negotiating a terminal type (name; e.g., “xterm ”); these backdoors trigger and skip authenti-
cation if the name has a particular value.

VT666 Default: the name “VT666”, one of the trigger terminal types we’ve observed in practice.

hot telnet orig ports : set[port]
Some Telnet backdoors trigger if the ephemeral port used by the client side of the connection happens to

be a particular value. This variable is used to list the port values whose use should be considered as possibly
indicating a backdoor.Note: Clearly, this mechanism can generate false positiveswhen the client by chance
happens to choose one of the listed ports.

Default:53982/tcp , one of the trigger ports we have observed in practice.

Deficiency: There should be a corresponding variable for Rlogin backdoors triggered by a similar mechanism.

hot ssh orig ports : set[port]
Similar tohot telnet orig ports , only for SSH.

Default:31337/tcp , a trigger port that we’ve observed in practice.

skip authentication : set[string]
A set of strings that, if present in the server’s initial output (i.e., its welcome banner), indicates the analyzer

should not attempt to analyze the session for an authentication dialog. This is used for servers that provide public
access and don’t bother authenticating the user.

Default: the string"WELCOME TO THE BERKELEY PUBLIC LIBRARY", which corresponds to a fre-
quently accessed public server in the Berkeley area. (Obviously, we include this default as an example, and
not because it will be appropriate for most Bro users! But it does little harm to include it.)

Deficiency: It would be more natural if this variable and a number of others listed below were of typepattern
rather thanset[string] . They are actually converted internally by the event engineinto regular expressions.

direct login prompts : set[string]
A set of strings that if seen during the authentication dialog mean that the user will be logged in as soon as they
answer the prompt.

Default:"TERMINAL?" , a prompt used by some terminal servers.

login prompts : set[string]
A set of strings corresponding to login username prompts during an authentication dialog.

Default: the strings

Login:
login:
Name:
Username:
User:
Member Name

and the default contents ofdirect login prompts .

134

login failure msgs : set[string]
A set of strings that if seen in text sent by the server during the authentication dialog correspond to a failed

login attempt.

Default: the strings

invalid
Invalid
incorrect
Incorrect
failure
Failure,
User authorization failure,
Login failed,
INVALID
Sorry,
Sorry.

login non failure msgs : set[string]
A set of strings similar tologin failure msgs that if present mean that the server text does not actually
correspond to an authentication failure (i.e., iflogin failure msgs also matches, it’s a false positive).

Default: the strings

Failures
failures
failure since last successful login
failures since last successful login

router prompts : set[string]
A set of strings corresponding to prompts returned by the local routers when a user successfully authenticates
to the router. For the purpose of this variable, see the next variable.

Default: empty.

login success msgs : set[string]
A set of strings that if seen in text sent by the server during the authentication dialog correspond to a successful
authentication attempt.

Default: the strings

Last login
Last successful login
Last successful login
checking for disk quotas
unsuccessful login attempts
failure since last successful login
failures since last successful login

135

and the default contents of therouter prompts variable.

Deficiency: Since by defaultrouter prompts is empty, this last inclusion does nothing.
In particular, if you redefine router prompts then login success msgs will not pick
up the change; you will need to redefine it to (again) includerouter prompts , using:
redef login success msgs += router prompts . This is clearly a misfeature of Bro and will
be fixed one fine day.

login timeouts : set[string]
A set of strings that if seen in text sent by the server during the authentication dialog correspond to the server
having timed out the authentication attempt.

Default: the strings

timeout
timed out
Timeout
Timed out
Error reading command input

(This last is returned by the VMS operating system.)

non ASCII hosts : set[addr]
A set of addresses corresponding to hosts whose login servers do not (primarily) use 7-bit ASCII. The analyzer
will not attempt to analyze authentication dialogs to such hosts, and will not complain about huge lines generated
by either the sender or receiver (perexcessive line).

Default: empty.

skip logins to : set[addr]
A set of addresses corresponding to hosts for which the analyzer should not attempt to analyze authentication
dialogs.

Default: the (empty) contents ofnon ASCII hosts .

always hot login ids : set[string]
A set of usernames that the analyzer should always flag as sensitive, even if they’re seen in a session for which
the analyzer isconfused(§ 7.19.1, page 131).

Default: the value ofalways hot ids defined by thehot analyzer.

hot login ids : set[string]
A set of usernames that the analyzer should flag as sensitive,unless it sees them in a session for which the

analyzer isconfused(§ 7.19.1, page 131).

Default: the value ofhot ids defined by thehot-ids analyzer.

rlogin id okay if no password exposed : set[string]
A set of username exceptions tohot login ids which the analyzer should not flag as sensitive if the user

authenticated without exposing a password (so, for example, via .rhosts).

Default: the username"root" .

136

7.19.3 login functions

The standardlogin script provides the following functions for external use:

is login conn (c: connection): bool
Returns true if the given connection is one analyzed bylogin (currently, Telnet or Rlogin), false otherwise.

hot login (c: connection, msg: string, tag: string)
Marks the given connection as hot, logs the given message, and demultiplexes (§ 10.17, page 178) the subse-

quent server-side contents of the connection to a filename based ontag and the client-side to a filename based
on the name"keys" . No return value.

is hot id (id: string, successful: bool, confused: bool): bool
Returns true if the username id should be considered sensitive, given that the user either did or did not success-
fully authenticate, and that the analyze was or was not in aconfusedstate (§ 7.19.1, page 131).

is forbidden id (id: string): bool
Returns true if the username id is present inforbidden ids or forbidden id patterns .

edit and check line (c: connection, line: string, successful: bool):
check info
Tests whether the given line of text seen on connectionc includes a sensitive username, after first applying

BSandDEL keystroke editing (§ 7.19.2, page 131).successful should be true if the user has successfully
authenticated, false otherwise.

The return value is acheck info record, which contains fourcheck info fields:

expanded line
All of the different editing interpretations of the line, separated by commas. For example, if the original

line is

"rob< DEL><BS><BS>ot"

then the different editing interpretations are"ro< BS><BS>ot" and"root" , so the return value will
be:

"rob< DEL><BS><BS>ot,ro< BS><BS>ot,root"

Deficiency: Ideally, these values would be returned in a listof some form, so that they can be accessed
separately and unambiguously. The current form is really suitable only for display to a person, and even
that can be quite confusing ifline happens to contain commas already.Or, perhaps an algorithm of
“simply pick the shortest” would find the correct editing every time anyway.

hot: bool True if any editing sequence resulted in a match against a sensitive username.

hot id: string The version of the input line (with or without editing) that was considered hot, or an empty
string if none.

forbidden: bool True if any editing sequence resulted in a match against a username considered “forbid-
den”, peris forbidden id .

edit and check user (c: connection, user: string, successful: bool, fmt s:
string): bool
Tests whether the given username used for authentication onconnectionc is sensitive, after first applyingBS

137

and DEL keystroke editing (§ 7.19.2, page 131).successful should be true if the user has successfully
authenticated, false otherwise.

fmt s is a fmt format specifying how the username information should be included in the connection’saddl
field. It takes twostring parameters, the current value of the field and the expanded version of the username
as described inexpanded line .

If edit and check line indicates that the username is sensitive, thenedit and check user records
the connection into its own demultiplexing files (§ 10.17, page 178). If the username isforbidden, then unless
the analyzer is confused, we attempt to terminate the connection usingterminate connection .

Returns true if the connection is now considered “hot,” either due to having a sensitive username, or because it
was hot upon entry to the function.

edit and check password (c: connection, password: string): bool
Checks the given password to see whether it contains a sensitive username. If so, then marks the connection as
hot and logs the sensitive password. No return value.

Note: The purpose of this function is to catch instances in which the event engine becomes out of synch with
the authentication dialog and mistakes what is, in fact, a username being entered, for a password being entered.
Such confusion can come about either due to a failure of the event engine’s heuristics, or due to deliberate
manipulation of the event engine by an attacker.

7.19.4 login event handlers

The standardlogin script handles the following events:

login failure (c: connection, user: string, client user: string, password:
string, line: string)
Invoked when the event engine has seen a failed attempt to authenticate asuser with password on the

given connectionc . client user is the user’s username on the client side of the connection. For Telnet
connections, this is an empty string, but for Rlogin connections, it is the client name passed in the initial
authentication information (to check against.rhosts). line is the line of text that led the analyzer to
conclude that the authentication had failed.

The analyzer first generates anaccount tried event to facilitate detection of password guessing, and then
checks for a sensitive username or password. If the usernamewas not sensitive and the password is empty, then
no further analysis is applied, since clearly the attempt was half-hearted and aborted. Otherwise, the analyzer
annotates the connection’saddl field with fail/< username> to mark the authentication failure, and also
checks theclient user to see if it is sensitive. If we then find that the connection ishot, the analyzer logs a
message to that effect.

login success (c: connection, user: string, client user: string, password:
string, line: string)
Invoked when the event engine has seen a successful attempt to authenticate. The parameters are the same as

for login failure .

The analyzer invokescheck hot with modeAPPL ESTABLISHEDsince the application session has now
been established. It generates anaccount tried event to facilitate detection of password guessing, and
then checks for a sensitive username or password. The event engine uses the special password"<none>" to

138

indicate that no password was exposed, and this mitigates the sensitivity of logins using particular usernames
perrlogin id okay if no password exposed .

The analyzer annotates the connection’saddl field with "< username>" to mark the successful authentica-
tion. Finally, if we then find that the connection is hot, the analyzer logs a message to that effect.

login input line (c: connection, line: string)
Invoked for every line of text sent by the client side of the login session to the server side. The analyzer matches
the text againstinput trouble and edited input trouble and invokeshot login with a tag of
"trb" if it sees a match, which will log an alert concerning the connection. However, this invocation is only
done while the connection’shot field count is≤ 2, to avoid cascaded alerts when an attacker gets really busy
and steps on a lot of sensitive patterns.

login output line (c: connection, line: string)
Invoked for every line of text sent by the server side of the login session to the client side. The ana-

lyzer checksbackdoor prompts and any pending input alerts that were waiting on the server output, per
edited input trouble . These last are then logged unless the output matched the pattern:

/No such file or directory/

Deficiency: Clearly, this pattern should not be hardwired but instead specified by a redefinable variable.

Finally, if the line is not too long and the text matchesoutput trouble and the connection’shot field count
is ≤ 2 (to avoid cascaded alerts), the analyzer invokeshot login with a tag of"trb" . Deficiency: “Too
long” is hardwired to be a length≥ 256 bytes. It, too, should be specifiable via a redefinable variable. Note:
We might wonder if not checking overly long lines presents anevasion threat: the attacker can bury their access
to a sensitive string in an excessive line and thus avoid detection. While this is true, it doesn’t appear to cost
much. First, some of the sensitive patterns are generated inserver output that will be hard to manipulate into
being overly long. Second, if the attacker is trying to avoiddetection, there are easier ways, such as passing
their output through a filter that alters it a good deal.

login confused (c: connection, msg: string, line: string)
Invoked when the event engine’s heuristics have concluded that they have become confused and can no longer
correctly track the authentication dialog (§ 7.19.1, page 131).msg gives the particular problem the heuristics
detected (for example,multiple login prompts means that the engine saw several login prompts in a
row, without the type-ahead from the client side presumed necessary to cause them) andline the line of text
that caused the heuristics to conclude they were confused.

Once declaring that it’s confused, the event engine will no longer attempt to follow the authentication dialog. In
particular, it will not generate subsequentlogin failure or login success events.

Upon this event, the standardlogin script invokescheck hot with modeAPPL ESTABLISHEDsince it
could well be that the application session is now established (it can’t know for sure, of course, because the
event engine has given up). It annotates the connection’saddl field with confused/< line> to mark the
confused state, and then logs to theweird file the particulars of the connection and the type of confusion
(msg). Deficiency: This should be done by generating aweird-related event instead.

Finally, the analyzer invokesset record packets to specify that all of the packets associated with this con-
nection should be recorded to thetrace file. Note: For the currentlogin analyzer, this call is not needed—it
records every packet of every login session anyway, becausethe generally philosophy is that Bro should record

139

whatever it analyzes, so that the analysis may be repeated orexamined in detail. Since the current analyzer
looks at every input and output line vialogin input andlogin output , it records all of the packets of ev-
ery such analyzed session. There is commented-out text inlogin success to be used iflogin input and
login output are not being used; it turns off recording of a session’s packets after the user has successfully
logged in (assuming the connection is not considered hot).

login confused text (c: connection, line: string)
Invoked for every line the user types after the event engine has entered theconfusedstate. If the connection is
not already considered hot, then the analyzer checks for thepresence of sensitive usernames in the line using
edit and check line , and, if present, annotates the connection’saddl field with confused/< line>,
logs that the connection has become hot, and invokesset record packets to record to thetrace file all
of the packets associated with the connection.

login terminal (c: connection, terminal: string)
Invoked when the client transmits a terminal type to the server. The mechanism by which the client transmits

the type depends on the underlying protocol (Rlogin or Telnet).

The handler checks the terminal type againsthot terminal types and if it finds a match invokes
hot login with a tag of"trb" .

excessive line (c: connection)
Invoked when the event engine observes a very long line sent by either the client or the server. Such long

lines are seen as potential attempts by an attacker to evade the login analyzer; or, possibly, as a Login session
carrying an unusual application.Note: One example we have observed occurs when a high-bandwidth binary
payload protocol such as Napster is sent over the Telnet or Rlogin well-known port in an attempt to either evade
detection or tunnel through a firewall.

This event is actually generic to any TCP connection carrying an application that uses the “Network Virtual
Terminal” (NVT) abstraction, which presently comprises Telnet and FTP. But the only handler defined in the
demonstration Bro policy is for Telnet, hence we discuss it here. For this reason, the handler first invokes
is login conn to check whether the connection is in fact a login session. Ifso, then if the connection is not
hot, and if the analyzer finds the server listed innon ASCII hosts , then it presumes the long line is due to
use of a non-ASCII character set; the analyzer invokesset login state andset record packets to
avoid further analysis or recording of the connection.

Otherwise, if the connection is still in the authenticationdialog, then the handler generates alogin confused
event with a confusion-type of"excessive line" , and changes the connection’s state toconfused.

Deficiency: The event engine is currently hardwired to consider a line of≥ 1024 bytes as “excessive”; clearly
this should be user-redefinable.

inconsistent option (c: connection)
NVT options are specified by the client and server stating which options they are willing to support vs. which
not, and then instructing one another which in fact they should or should not use for the current connection. If
the event engine sees a peer violate either what the other peer has instructed it to do, or what it itself offered in
terms of options in the past, then the engine generates aninconsistent option event.

The handler for this event simply records an entry about it totheweird file. Deficiency: The event handler in-
vocation does not include enough information to determine what option was inconsistently specified; in addition,
it would be convenient to integrate the handling of problemslike this within the general “weird” framework.

140

Note: As forexcessive line above, this event is actually a generic one applicable to anyNVT-based
protocol. It is handled here because the problem most often crops up for Telnet sessions. Note: Also, the
handler does not check to see whether the connection is a login session (as it does forexcessive line); it
serves as the handler for any NVT session with an excessive line.

Note: Finally, note that this event can be generated if the session contains a stream of binary data. One way
this can occur is when the session is encrypted but Bro fails to recognize this fact.

bad option (c: connection)
If an NVT option is either ill-formed (e.g., a bad length field) or unrecognized, then the analyzer generates this
event.

The processing of this event (recording information to theweird file) and the various notes and deficiencies
associated with it are the same as those forinconsistent option above.

bad option termination (c: connection)
If an NVT option fails to be terminated correctly (for example, a character is seen within the option that is

disallowed for use in the option), then the analyzer generates this event.

The processing of this event (recording information to theweird file) and the various notes and deficiencies
associated with it are the same as those forinconsistent option above.

authentication accepted (name: string, c: connection)
The NVT framework includes options for negotiating authentication. When such an option is sent from client
to server and the server replies that it accepts the authentication, then the event engine generates this event.

The handler annotates the connection’saddl field with auth/< name>, unless that annotation is already
present.

authentication rejected (name: string, c: connection)
The same asauthentication accepted , except invoked when the server replies that it rejects the at-

tempted authentication.

The handler annotates the connection’saddl field with auth-failed/< name>.

authentication skipped (c: connection)
Invoked when the event engine sees a line in the authentication dialog that matchesskip authentication .

The handler annotates the connection’saddl field with “(skipped) ” to mark that authentication was skipped,
and then invokesskip further processing and (unless the connection is hot)set record packets
to skip any further analysis of the connection, and to stop recording its packets to thetrace file.

connection established (c: connection)
connection established is a generic event generated for all TCP connections; however, the login
analyzer defines an additional handler for it.

The handler first checks (viais login conn) whether this is a Telnet or Rlogin connection. If so, it generates
an authentication skipped event if the server’s address occurs inskip logins to , and also (for
Telnet) checks whether the client’s port occurs inhot telnet orig ports , invokinghot login with the
tag"orig" if it does.

For SSH connections, it likewise checks the client’s port, but in hot ssh orig ports , marking the connec-
tion as hot and logging a real-time alert if it is.

141

Call Meaning

NULL A do-nothing call typically provided by all RPC services.
GETPORT Look up the port associated with a given RPC program.
SET Add a new port mapping (or replace an existing mapping) for anRPC program.
UNSET Remove a port mapping.
DUMP Retrieve all of the RPC program mappings.
CALLIT Both look up a program and then directly call it.

Table 7.5: Types of calls to the RPC portmapper service.

partial connection (c: connection)
As noted earlier,partial connection is a generic event generated for all TCP connections. Thelogin
analyzer also defines a handler for it, one which (if it’s a Telnet/Rlogin connection) sets the connection’s state
to confusedand checks forhot telnet orig ports .

activating encryption (c: connection)
The NVT framework includes options for negotiating encryption. When such a series of options is successfully
negotiated, the event engine generates this event.Note: The negotiation sequence is complex and can fail at a
number of points. The event engine does not attempt to generate events for each possible failure, but instead
only looks for the option sent after a successful negotiation sequence.

The handler annotates the connection’saddl field with “(encrypted) ” to mark that authentication was
encrypted.Note: The event engine itself marks the connection as requiring no further processing. This is done
by the event engine rather than the handler because the eventengine cannot do its job (regardless of the policy
the handler might desire) in the face of encryption.

7.20 Theportmapper Analyzer

The portmapper analyzer monitors one particularly important form of remote procedure call (RPC) [RFC1831,
RFC1832] traffic: the portmapper service, used to map between RPC program (and version) numbers and the TCP or
UDP port on which the service runs for a particular host. For example,rstatd is an RPC service that provides “remote
host status monitoring” so that a set of hosts can be informedwhen any of them reboots.rstatd has been assigned a
standard RPC program number of 100002. To find out the corresponding TCP or UDP port on a given host, a remote
host would usually first contact the portmapper RPC service running on the host and request the port corresponding to
program 100002.

All in all, clients can make six different types of calls to the portmapper, as summarized in Table 7.20. Attackers
often use GETPORT and DUMP to see whether a host may be runningan RPC service vulnerable to a known exploit.

The analyzer uses a capture filter of “port 111 ” (§ 7.1.2, page 93), equivalent to “tcp port 111 or udp
port 111 ” (since the portmapper service ordinarily accepts calls using either TCP or UDP, both on port 111). It
checks the different types of portmapper calls against policies expressed using a number of different variables.

Note: An important point not to overlook is that an attacker doesnot have to first call the portmapper service in
order to call an RPC program. They might instead happen to know the port on which the service runsa priori, since
for example it may generally run on the same port for a particular operating system; or they might scan the host’s

142

different TCP or UDP ports directly looking for a reply from the service. Thus, while portmapper monitoring proves
very useful in detecting attacks, it doesnotprovide comprehensive monitoring of attempts to exploit RPC services.

7.20.1 portmapper variables

The standard script provides the following redefinable variables:

rpc programs : table[count] of string
Maps RPC program numbers to a string used to name the service.For example, the[100002] entry is mapped
to "rstatd" .

Default: a large list of RPC services.

NFS services : set of string
Lists the names of those RPC services that correspond to Network File System (NFS) [RFC1094, RFC1813]

services. This variable is provided because it is convenient to express policies specific to accessing NFS file
systems.

Default: the servicesmountd, nfs, pcnfsd, nlockmgr, rquotad, status.

Deficiency: Bro’s notion of NFS is currently confined to just knowledge of the existence of these services. It
does not analyze the particulars of different NFS operations.

RPCokay : set[addr, addr, string]
Indexed by the host providing a given service and then by the host accessing the service. If an entry is present,
it means that the given access is allowed. For example, an entry of:

[1.2.3.4, 5.6.7.8, "rstatd"]

means that host5.6.7.8 is allowed to access therstatdservice on host1.2.3.4 .

Default: empty.

RPCokay nets : set[net]
A set of networks allowed to make GETPORT requests without complaint. The notion behind providing this

variable is that the listed networks are trusted. However, the trust doesn’t extend beyond GETPORT to other
portmapper requests, because GETPORT is the only portmapper operation used routinely by a set of hosts
trusted by another set of hosts (but that don’t belong to the same group, and hence are not issuing SET and
UNSET calls).

Default: empty.

RPCokay services : set[string]
A set of services for which GETPORT requests should not generate complaints. These might be services that

are widely invoked and believed exploit-free, such aswalld, though care should be taken with blithely assuming
that a given service is indeed exploit-free.

Note that, like forRPCokay nets , the trust does not extend beyond GETPORT, because it shouldbe the only
portmapper operation routinely invoked.

Default: empty.

143

NFS world servers : set[addr]
A set of hosts that provide public access to an NFS file system,and thus should not have any of their NFS traffic
flagged as possibly sensitive. (The presumption here is thatsuch public servers have been carefully secured
against any remote NFS operations.) An example of such a server might be one providing read-only access to a
public database.

Default: empty.

RPCdump okay : set[addr, addr]
Indexed first by the host requesting a portmapper dump, and second by the host from which it’s requesting the
dump. If an entry is present, then the dump operation is not flagged.

Default: empty.

any RPCokay : set[addr, string]
Pairs of hosts and services for which any GETPORT access to the given service is allowed.

sun-rpc.mcast.net Default:

[NFS_world_servers, NFS_services],
[sun-rpc.mcast.net, "ypserv"]

The first of these allows access to any NFS service of any of theNFS world servers , using Bro’s cross-
product initialization feature (§ 3.12.2, page 35). The second allowsypservrequests to the multicast address
reserved for RPC multicasts.2

suppress pm log : table[addr, string] of bool
Do not generate real-time alerts for access by the given address for the given service. Note that unlike most Bro
policy variables, this one is notconst but is modified at run-time to add to it any host that invokes the walld
RPC service, so that such access is only reported once for each host.

Default: empty, but dynamic as discussed above.

7.20.2 portmapper functions

The standard script provides the following externally accessible functions:

rpc prog (p: count): string
Returns the name of the RPC program with the given number, if it’s present inrpc programs ; otherwise

returns the text"unknown-< p>" .

pm check getport (r: connection, prog: string): bool
Checks a GETPORT request for the given program against the policy expressed byRPCokay services ,

any RPCokay , RPCokay , andRPCokay nets , returning true if the request violates policy, false if it’s
allowed.

2I don’t know how much this type of access is actually used in practice, but experience shows that requests forypservdirected to that address
pop up not infrequently.

144

pm activity (r: connection, log it: bool)
A bookkeeping function invoked when there’s been portmapper activity on the given connection.

The function records the connection viarecord connection , unless it is a TCP connection (which will
instead be recorded byconnection finished). If log it is true then the function generates a real-time
alert of the form:

rpc:<connection-id> <RPC-service> <r$addl>

For example:

972616255.679799 rpc: 65.174.102.21/832 > 182.7.9.47/po rtmapper
pm_getport: nfs -> 2049/udp

However, it does not generate the alert if either the client host and service are present insuppress pm log ,
or if it already generated an alert in the past for the same client, server and service (to prevent alert cascades).

pm request (r: connection, proc: string, addl: string, log it: bool)
Invoked when the given connection has made a portmapper request of some sort for the given RPC procedure
proc . addl gives an annotation to add to the connection’saddl field. If log it is true, then connection
should be logged; it will also be logged if the function determines that it is hot.

The function first invokescheck scan andcheck hot (with a mode ofCONNESTABLISHED), unlessr
is a TCP connection, in which case these checks have already been made byconnection established .
The function then addsaddl to the connection’saddl field, though if the field’s length already exceeds 80
bytes, then it just tacks on"..." (unless already present). This last is necessary because Bro will sometimes
see zillions of successive portmapper requests that all usethe same connection ID, and these will each add to
addl until it becomes unwieldy in size.Deficiency: Clearly, the byte limit of 80 should be adjustable.

Finally, the function invokescheck hot with a mode ofCONNFINISHED , andpm activity to finish up
bookkeeping for the connection.

No return value.

pm attempt (r: connection, proc: string, status: count, addl: string, log it:
bool)
Invoked when the given connection attempted to make a portmapper request of some sort, but the request failed
or went unanswered. The arguments are the same as forpm request , with the addition ofstatus , which
gives the RPC status code corresponding to why the attempt failed (see below).

The function first invokescheck scan andcheck hot (with a mode ofCONNATTEMPTED), unlessr is a
TCP connection, in which case these checks have already beenmade byconnection attempt .

The function then addsaddl to the connection’saddl field, along with a text description of the RPC status
code, as given in Table 7.20.2.

No return value.

145

Status description Meaning

"ok" The call succeeded.
"prog unavail" The call was for an RPC program that has not registered with the portmapper.
"mismatch" The call was for a version of the RPC program that has not registered with the portmapper.
"garbage args" The parameters in the call did not decode correctly.
"system err" A system error (such as out-of-memory) occurred when processing the call.
"timeout" No reply was received within 24 seconds of the request.
"auth error" The caller failed to authenticate to the server, or was not authorized to make the call.
"unknown" An unknown error occurred.

Table 7.6: Types of RPC status codes.

7.20.3 portmapper event handlers

The standard script handles the following events:

pm request null (r: connection)
Invoked upon a successful portmapper request for the “null”procedure. The script invokespm request with
log it=F .

pm request set (r: connection, m: pm mapping, success: bool)
Invoked upon a nominally successful portmapper request to set the portmapper bindingm. The script invokes

pm request with log it=T . success is true if the server honored the request, false otherwise; the script
turns this into an annotation of"ok" or "failed" .

Thepm mapping type (form) has three fields,program: count , version: count andp: port , the
port for the mapping of the given program and version.pm mapping

pm request unset (r: connection, m: pm mapping, success: bool)
Invoked upon a nominally successful portmapper request to remove a portmapper binding. The script invokes
pm request with log it=T . success is true if the server honored the request, false otherwise; the script
turns this into an annotation of"ok" or "failed" .

pm request getport (r: connection, pr: pm port request, p: port)
Invoked upon a successful portmapper request to look up a portmapper binding.pr , of type

pm port request , has three fields:program: count , version: count , andis tcp: bool , this
last indicating whether the caller is request the TCP or UDP port, if the given program/version has mappings for
both. The script invokespm request with log it set according to the return value ofpm check getport
and an annotation of the mapping.

pm request dump (r: connection, m: pm mappings)
Invoked upon a successful portmapper request to dump the portmapper bindings. The script invokes

pm request with log it=T unlessRPCdump okay indicates that the dump call is allowed. The script
ignoresm, which gives the mappings as atable[count] of pm mapping , where the table index simply
reflects the order in which the mappings were returned, starting with an index of 1.Deficiency: What the script
shoulddo, instead, is keep track of the mappings so that Bro can identify the service associated with connections
for otherwise unknown ports.

146

pm request callit (r: connection, pm callit request, p: port)
Invoked upon a successful portmapper request to look up and call an RPC procedure. The script

invokes pm request with log it=T unless the combination of the caller and the program are
in suppress pm log . Finally, if the program called iswalld, then the script adds the caller to
suppress pm log .

The pm callit request type has four fields:pm callit request program: count , version:
count , proc: count , andarg size: count . These reflect the procedure being looked up and called,
and the size of the arguments being passed to it, respectively. Deficiency: Currently, the event engine does not
do any analysis or refinement of the arguments passed to the procedure (such as making them available to the
event handler) or the return value.p is the port value returned by the call.

pm attempt null (r: connection, status: count)
Invoked upon a failed portmapper request for the “null” procedure.status gives the reason for the failure.

The script invokespm attempt with log it=T .

pm attempt set (r: connection, status: count, m: pm mapping)
Invoked upon a failed portmapper request to set the portmapper bindingm. The script invokespm attempt

with log it=T .

pm attempt unset (r: connection, status: count, m: pm mapping)
Invoked upon a failed portmapper request to remove a portmapper binding. The script invokespm attempt

with log it=T .

pm attempt getport (r: connection, status: count, pr: pm port request)
Invoked upon a failed portmapper request to look up a portmapper binding.pr , of typepm port request ,
has three fields:program: count , version: count , andis tcp: bool , this last indicating whether
the caller requested the TCP or UDP port. The script invokespm attempt with log it set according to the
return value ofpm check getport .

pm attempt dump (r: connection, status: count)
Invoked upon a failed portmapper request to dump the portmapper bindings. The script invokespm attempt
with log it=T unlessRPCdump okay indicates that the dump call is allowed.

pm attempt callit (r: connection, status: count, pm callit request)
Invoked upon a failed portmapper request to look up and call an RPC procedure. The script in-

vokes pm attempt with log it=T unless the combination of the caller and the program are
in suppress pm log . Finally, if the program called iswalld, then the script adds the caller to
suppress pm log .

pm bad port (r: connection, bad p: count)
Invoked when a portmapper request or response includes an invalid port number. Since ports are represented

by unsigned 4-byte integers, they can stray outside the allowed range of 0–65535 by being≥ 65536. The script
invokesconn weird addl with a weird tagof "bad pm port" .

147

Field Meaning

num pkts The number of packets sent by the endpoint, as seen by the monitor. The endpoint may
have sent others that the network dropped upstream from the monitor.

num rxmit The number of packets retransmitted by the endpoint, as seenby the monitor.
num rxmit bytes The number of bytes retransmitted by the endpoint.
num in order The number of packets sent by the endpoint that arrived at themonitor in order, where “in

order” means in the same order as sent by the endpoint, ratherthan in sequence number.
(Thus, a retransmission can arrive in order, by this definition.) Bro determines if the packet
arrived in order by applying heuristics to the IP identification (ID) field, which in general
will increase by a small amount between successive packets transmitted by an endpoint.

num OO The number of packets sent by the endpoint that arrived at themonitor out of order. See the
previous entry for the definition of “in order”, and hence “out of order.”

num repl The number of extra copies of packets sent by the endpoint that arrived at the monitor. Bro
considers a packet replicated if its IP ID field is the same as for the previous packet it saw
from the endpoint. Using this definition, a replication is most likely caused by a network
mechanism such as duplication of a packet by a router, ratherthan a transport mechanism
such as retransmission, though some TCPs fully reuse packets when retransmitting them,
including their IP ID field.

endian type Whether the advance of the IP ID field as seen by the monitor wasconsistent with big-
endian (network order) addition, little-endian, or undetermined. The three values are repre-
sented by the Bro constantsENDIAN BIG, ENDIAN LITTLE , andENDIAN UNKNOWN.
In addition, the value can beENDIAN CONFUSED, meaning that the monitor saw conflict-
ing evidence for little- and big-endian.

Table 7.7:endpoint stats fields for summarizing connection endpoint statistics, allof typecount .

7.21 Theanaly Analyzer

The analy analyzer provides a limited mechanism to use Bro to do statistical analysis on TCP connections. Its
primary purpose is to demonstrate that Bro has applicationsto network traffic analysis beyond intrusion detection. It
defines one event handler:

conn stats (c: connection, os: endpoint stats, rs: endpoint stats)
Invoked for each connection when it terminates (for whatever reason).os and rs are the statistics for the

originator endpoint and the responder endpoint, respectively; Table 7.21 gives the different record fields.

7.22 Thesignature Module

The signature module analyzessignature matches(see§ 8, page 165). For each signature, you can specify one
of the actions defined in Table 7.22. In addition, the module identifies two types ofexploit scans: horizontal(a host
triggers a signature for multiple destinations) andvertical (a host triggers multiple signature for the same destination).

The module handles one event:

signature match (state: signature state, msg: string, data: string)

148

Action Meaning

SIG IGNORE Ignore the signature completely.
SIG QUIET Process for scan detection but don’t report individually.
SIG FILE Write matches tosignatures-log
SIG LOG Log matches and write them tosignatures-log

Table 7.8: Possible actions to take for signatures matches.signatures-log defaults to
open log file("signatures") .

Invoked upon a match of a signature which contains anevent action (§ 8.2.2, page 168).

It provides the following redefinable variables:

sig actions : table[string] of count
Maps signature IDs to actions as defined in Table 7.22.

Default:SIG FILE .

horiz scan thresholds : set[count]
Generate a log message whenever a remote host triggers a signature for the given number of hosts.

Default:{ 5, 10, 50, 100, 500, 1000 }

vert scan thresholds : set[count]
Generate a log message whenever a remote host triggers the given number of signatures for the same destination.

Default:{ 5, 10, 50, 100, 500, 1000 }

The module defines one function for external use:

has signature matched id: string, orig: addr, resp: addr): bool
Returns true if the given signature has already matched for the (originator,responder) pair.

7.23 TheSSL Analyzer

TheSSL analyzer processes traffic associated with the SSL (Secure Socket Layer) protocol versions 2.0 [SSLv2], 3.0
[SSLv30] and 3.1 [TLSv1]. SSL version 3.1 is also known as TLS(Transport Layer Security) version 1.0 since from
that version onward the IETF has taken responsibility for further developement of SSL.

Bro instantiates anSSL analyzer for any connection with service ports443/tcp (https), 563/tcp
(nntps), 585/tcp (imap4-ssl), 614/tcp (sshell), 636/tcp (ldaps), 989/tcp
(ftps-data), 990/tcp (ftps), 992/tcp (telnets), 993/tcp (imaps), 994/tcp
(ircs), 995/tcp (pop3s) , providing you have loaded theSSL analyzer, or defined a handler for one
of the SSL events.

By default, the analyzer uses the above set of ports as a capture filter (§ 7.1.2, page 93). It currently checks the SSL
handshake process for consistency, tries to verify seen certificates, generates several events, does connection logging,
tries to detect security weaknesses, and produces simple statistics. It is also able to store seen certificates on disk.
However, it does no decryption, so analysis is limited to clear text SSL records. This means that analysis stops in the

149

type x509: record {
issuer: string; # issuer name of the certificate
subject: string; # subject name of the certificate

};

Figure 7.9: Definition of thex509 record.

type ssl_connection_info: record {
id: count; # the log identifier number
connection_id: conn_id; # IP connection information
version: count; # version associated with connection
client_cert: x509;
server_cert: x509;
id_index: string; # index for associated sessionID
handshake_cipher: count; # cipher suite client and server a greed upon

};

Figure 7.10: Definition of thessl connection info record.

middle of the handshaking phase for SSLv2 and at the end of it for SSLv3.0/SSLv3.1 (TLS). For this reason we have
not implemented the SSL session caching mechanism (yet).

The analyzer consists of the four files:ssl.bro , ssl-ciphers.bro , ssl-errors.bro , and
ssl-alerts.bro , which are accessed by@load ssl . The analyzer writes to theweird and ssl log files.
The first receives all non-conformant and “weird” activity,while the latter tracks the SSL handshaking phase.

7.23.1 Thex509 record

This record is a very simplified structure for storing X.509 [X509] certificate information. It currently supports only
the issuer and subject names.

7.23.2 Thessl connection info record

The main data structure managed by theSSLanalyzer is a collection ofssl connection info records, where the
record type is shown in Figure 7.23.2. The corresponding fields areFix me: the description here is out of date:

id
The unique connection identifier assigned to this connection. Connections are numbered starting at1 and

incrementing with each new connection.

connection id
The TCP connection which this SSL connection is based on.

version
The SSL version number for this connection. Possible valuesareSSLv20 , for SSL version 2.0,SSLv30 for

version 3.0, andSSLv31 for version 3.1.

150

client cert
The information from the client certificate, if available.

server cert
The information from the server certificate, if available.

id index
Index into associatedSSL sessionID record table.

handshake cipher
The cipher suite client and server agreed upon.Note: For SSLv2 cached sessions, this is a placeholder

(0xABCD).

7.23.3 SSL variables

The standard script defines the following redefinable variables:

ssl compare cipherspecs : bool
If true, remember the client and server cipher specs and perform additional tests. This costs an extra amount of
memory (normally only for a short time) but enables detection of non-intersecting cipher sets, for example.

Default:T.

ssl analyze certificates : bool
If true, analyze certificates seen in SSL connections, whichincludes the following steps:

• Generating a hash of the certificate and checking if we already saw it earlier from the current host. If
so, we won’t verify it, because we already did and verifying is a computational expensive process. If the
certificate has changed for the current host, generate a weird event.

• Verify the certificate.

• Store of the certificate on disk in DER format.

Default:T.

ssl store certificates : bool
If certificates are analyzed, this variable determines theyshould be stored on disk.

Default:T.

ssl store cert path : string
Path where certificates are stored. If empty, use the currentdirectory.Note: The path must not end with a slash!

Default:"../certs" .

ssl verify certificates : bool
If certificates are analyzed, wheter to verify them.

Default:T.

x509 trusted cert path : string
Path where OpenSSL looks for trusted certificates. If empty,use the default OpenSSL path.

Default:"" .

151

1046778101.534846 #1 192.168.0.98/32988 > 213.61.126.12 4/https start
1046778101.534846 #1 connection attempt version: 3.1
1046778101.534846 #1 cipher suites: SSLv3x_RSA_WITH_RC4 _128_MD5 (0x4), SSLv3x_RSA_FIPS_WITH_3DES_EDE_CBC_
1046778101.753356 #1 server reply, version: 3.1
1046778101.753356 #1 cipher suite: SSLv3x_RSA_WITH_RC4_ 128_MD5 (0x4),
1046778101.762601 #1 X.509 server issuer: /C=DE/ST=Hambu rg/L=Hamburg/O=TC TrustCenter for Security
1046778101.762601 #1 X.509 server subject: /C=DE/ST=Berl in/O=Lehmanns Fachbuchhandlung GmbH/OU=Zentrale
1046778101.894567 #1 handshake finished, version 3.1, cip her suite: SSLv3x_RSA_WITH_RC4_128_MD5
1046778104.877207 #1 finish

Used cipher-suites statistics:
SSLv3x_RSA_WITH_RC4_128_MD5 (0x4): 1

Figure 7.11: Example of SSL log file with a single SSL session.

ssl max cipherspec size : count
Maximum size in bytes for an SSL cipherspec. If we see attempted use of larger cipherspecs, warn and skip

comparing it.

Default:45 .

ssl store key material : bool
If true, stores key material exchanged in the handshaking phase.Note: This is mainly for decryption purposes
and currently useless.

Default:T.

In addition,ssl log holds the name of the SSL log file to which Bro writes SSL connection summaries. It
defaults toopen log file("ssl") .

Figure 7.23.3 shows an example of how entries in the SSL log file look like. We see a transcript of the first SSL
connection seen since Bro started running. The first line gives its start and the participating hosts and ports. Next, we
see a client trying to attempt a SSL (Version 3.1) connectionand the cipher suites offered. The server replies with a
SSL 3.1SERVER-REPLYand the desired cipher suite.Note: In SSL v3.0/v3.1 this determines which cipher suite will
be used for the connection. Following this is the certificate the server sends, including the issuer and subject. Finally,
we see that the handshaking phase for this SSL connection is finished now, and that client and server agreed on the
cipher suite:RSAWITH RC4 128 MD5. Due to encryption, the SSL analyzer skips all further data.We only see the
end of the connection. When Bro finishes, we get some statistics about the cipher suites used in all monitored SSL
connections.

7.23.4 SSL event handlers

The standard script handles the following events:

ssl conn attempt (c: connection, version: count, cipherSuites:
cipher suites list)

152

Invoked upon the client side of connectionc when the analyzer sees aCLIENT-HELLO of SSL version
version including the cipher suites the client offerscipherSuites .

The version can be0x0002 , 0x0300 or 0x0301 . A new entry is generated inside the SSL connection table
and the cipher suites are listed. Ciphers, that are known as weak (according to a corresponding table of weak
ciphers) are logged inside theweak.log file. This also happens to cipher suites that we do not know yet. Note:
See the filessl-ciphers.bro for a list of known cipher suites.

ssl conn server reply (c: connection, version: count, cipherSuites:
cipher suites list)

This event is invoked upon the analyzer receiving aSERVER-HELLOof the SSL server. It contains the SSL
version the server wishes to use (Note: This finally determines, which SSL version will be usedfurther) and the
cipher suite he offers. If it is SSL version 3.0 or 3.1, the server determines within thisSERVER-HELLOthe
cipher suite for the following connection (so it will only beone). But if it’s a SSL version 2.0 connection, the
server only announces the cipher suites he supports and it’sup to the client to decide which one to use.

Again, the cipher suites are listed and weak and unknown cipher suites are reported insideweak.log .

ssl certificate seen (c: connection, isServer: int)

Invoked whenever we see a certificate from client or server but before verification of the certificate takes place.
This may be useful, if you want to do something before certificate verification (e.g. do not verify certificates of
some given servers).

ssl certificate (c: connection, cert: x509, isServer: bool)

Invoked after the certificate from server or client (isServer) has been verified.Note: We only verify certificates
once. If we see them again, we only check if they have changed!cert holds the issuer and subject of the
certificate, which gets stored inside this SSL connection’sinformation record inside the SSL connection table
and are written tossl.log .

ssl conn reused (c: connection, session id: string)

Invoked whenever a former SSL session is reused.session id holds the session ID as string of the reused
session and is written tossl.log . Currently we don’t do session tracking, because SSL version 2.0 doesn’t
send the session ID in clear text when it’s generated.

ssl conn established (c: connection, version: count, cipher suite: count)

Invoked when the handshaking phase of an SSL connection is finished. We see the used SSL version and the
cipher suite that will be used for cryptography (written tossl.log) if we have SSL version 3.0 or 3.1. In case
of SSL version 2.0 we can only determine the used cipher suitefor new sessions, not for reused ones. (Note: In
SSL version 3.0 and 3.1 the cipher suite to be used is already anounced in theSERVER-HELLO.)

ssl conn alert (c: connection, version: count, level: count, descri ption:
count)

153

Invoked when the analyzer receives an SSL alert. Thelevel of the alert (warning or fatal) and the
description are written intossl.log . (Note: Seessl-alerts.bro).

ssl conn weak (name: string, c: connection)

This event is called when the analyzer sees:

• weak ciphers (See:ssl conn attempt , ssl server reply , ssl conn established),

• unknown ciphers (See:ssl conn attempt , ssl server reply , ssl conn established)

• or certificate verification failed.

Seeweak.bro .

7.24 Theweird Module

Theweird module processes unusual or exceptional events. A number ofthese “shouldn’t” or even “can’t” happen,
yet they do. The general design philosophy of Bro is to check for such events whenever possible, because they can
reflect incorrect assumptions (either Bro’s or the user’s),attempts by attackers to confuse the monitor and evade
detection, broken hardware, misconfigured networks, and soon.

Weird events are divided into three categories, namely those pertaining to: connections; flows (a pair of hosts,
but for which a specific connection cannot be identified); andnetwork behavior (cannot be associated with a pair
of hosts). These categories have a total of four event handlers: conn weird , conn weird addl , flow weird ,
andnet weird , and in the corresponding sections below we catalog the events handled by each. In addition, we
separately catalog the events generated by the standard scripts themselves (§ 7.24.8, page 163). Finally, two more weird
events have their own handlers, in order to associate detailed information with the event:rexmit inconsistency
andack above hole .

weird file is the logging file that the module uses to record exceptionalevents. It defaults to
open log file("weird") .

Note: While these events “shouldn’t” happen, in reality they often do. For example, of the 73 listed below, a
search of 10 months’ worth of logs at LBNL shows that 42 were seen operationally. While some of the instances reflect
attacks, the great majority are simply due to(i) buggy implementations,(ii) diverse use of the network, or(iii) Bro
bugs or limitations. Accordingly, you may initially be inclined to log each instance, but don’t be surprised to find that
you soon decide to only record many of them in theweird file, or not record them at all. (For further discussion, see
the section on “crud” in [Pa99].)

7.24.1 Actions for “weird” events

The general approach taken by the module is to categorize foreach event the action to take when the event engine
generates the event. Table 7.24.1 summarizes the differentpossible actions.

7.24.2 weird variables

The standardweird script provides the following redefinable variables:

154

Action Meaning

WEIRDUNSPECIFIED No action specified.
WEIRDIGNORE Ignore the event.
WEIRDFILE Record the event toweird file , if it has not been seen for these hosts before. (But see

weird do not ignore repeats .)
WEIRDLOGALWAYS Record the event toweird file and generate a real-time alert each time the event occurs.
WEIRDLOGONCE Record the event toweird file ; generate a real-time alert the first time the event occurs.
WEIRDLOGPERCONN Record the event toweird file ; generate a real-time alert the first time it occurs for a

given connection.
WEIRDLOGPERORIG Record the event toweird file ; generate a real-time alert the first time it occurs for a

given originating host.

Table 7.9: Different types of possible actions to take for “weird” events.

weird action : table[string] of count
Maps different weird events to actions as given in Table 7.24.1.

Default: as specified inconn weird , conn weird addl , flow weird , net weird , and § 7.24.8,
page 163. As usual, you can change particular values using refinement. For example:

redef weird_action: table[string] of count += {
[["bad_TCP_checksum", "bad_UDP_checksum"]] = WEIRD_IGN ORE,
["fragment_overlap"] = WEIRD_LOG_PER_CONN,

};

would specify to ignore TCP and UDP checksum errors (rather than the default ofWEIRDFILE), and to alert
on fragment overlaps once per connection in which they occur, rather than the default ofWEIRDLOGALWAYS.

weird action filters : table[string] of function(c: connection): count
Indexed by the name of a weird event, yields a function that when called for a given connection exhibiting

the event, returns an action from Table 7.24.1. A return value of WEIRDUNSPECIFIED means “no special
action, use the action you normally would.” This variable thus allows arbitrary customization of the handling of
particular events.

Default: empty, for theweird analyzer itself. Theportmapper analyzer redefines this variable as follows:

redef weird_action_filters += {
[["bad_RPC", "excess_RPC", "multiple_RPCs", "partial_R PC"]] =

RPC_weird_action_filter,
};

whereRPCweird action filter is a function internal to the analyzer that returnsWEIRDFILE if the
originating host is inRPCokay nets , andWEIRDUNSPECIFIEDotherwise.

weird ignore host : set[addr, string]
Specifies that the analyzer should ignore the given weird event (named by the second index) if it involves the

given address (as either originator or responder host).

155

Default: empty.

weird do not ignore repeats : set[string]
Gives a set of weird events that, if their action isWEIRDFILE , should still be recorded to theweird file
each time they occur.

Default: the events relating to checksum errors, i.e.,"bad IP checksum" , "bad TCP checksum" ,
"bad UDPchecksum" , and"bad ICMP checksum" . These are recorded multiple times because it can
prove handy to be able to track clusters of checksum errors.

7.24.3 weird functions

Theweird analyzer includes the following functions:

report weird (t: time, name: string, id: string, action: count, no log: bool)
Processes an occurrence of the weird eventname associated with the connection described by the stringid

(which may be empty if no connection is associated with the event).action is the action associated with the
event. Forreport weird , the only distinctions made between the different actions are thatWEIRDIGNORE
causes the function to do nothing; any ofWEIRDLOGXXXcause the function to log a message, unlessno log
is true; andWEIRDUNSPECIFIEDcauses the function to look up the action inweird action . If the func-
tion doesnotfind an action for the event, then it usesWEIRDLOGALWAYSand prepends the log message with
a pair of asterisks (“** ”) to flag that this event does not have a specified action.

ForWEIRDFILE , report weird only records the event once to the file, unless the given eventis present in
weird do not ignore repeats . Events with loggable actions are always recorded toweird file .

report weird conn (t: time, name: string, id: string, c: connection)
Processes an occurrence of the weird eventname associated with the connectionc , which is described by the
string id .

If report weird conn finds one of the hosts and the given event name inweird ignore host , then it
does nothing. Then, if the event is inweird action , then it looks up the event inweird action filters
and invokes the corresponding function if present, otherwise taking the action fromweird action . It then im-
plements the various flavors ofWEIRDLOGXXX by not logging events more than once per connection, origina-
tor host, etc., though the events are still written toweird file . Finally, the function invokesreport weird
to do the actual recording and/or writing toweird file .

report weird orig (t: time, name: string, id: string, orig: addr)
Processes an occurrence of the weird eventname associated with the source addressorig . id textually

describes the flow fromorig to the destination, for example usingendpoint id .

The function looks up the event name inweird action and passes it along toreport weird .

7.24.4 Events handled byconn weird

conn weird (name: string, c: connection)
Invoked for most “weird” events.name is the name of the weird event, andc is the connection with which it’s
associated.

conn weird handles the following events, all of which have a default action of WEIRDFILE :

156

active connection reuse
A new connection attempt (initial SYN) was seen for an already-established connection that has not yet termi-
nated.

bad HTTP reply
The first line of a reply from an HTTP server did not includeHTTP/version.

bad HTTP version
The first line of a request from an HTTP client did not includeHTTP/version.

bad ICMP checksum
The checksum field in an ICMP packet was invalid.

bad rlogin prolog
The beginning of an Rlogin connection had a syntactical error.

bad RPC
A Remote Procedure Call was ill-formed.

bad RPCprogram
A portmapper RPC call did not include the correct portmapperprogram number.

bad SYNack
A TCP SYN acknowledgment (SYN-ack) did not acknowledge the sequence number sent in the initial SYN.

bad TCP checksum
A TCP packet had a bad checksum.

bad UDPchecksum
A UDP packet had a bad checksum.

baroque SYN
A TCP SYN was seen with an unlikely combination of other flags (the URGent pointer).

blank in HTTP request
The URL in an HTTP request includes an embedded blank.

connection originator SYNack
A TCP endpoint that originated a connection by sending a SYN followed this up by sending a SYN-ack.

data after reset
After a TCP endpoint sent a RST to terminate a connection, it sent some data.

data before established
Before the connection was fully established, a TCP endpointsent some data.

excessive RPClen
An RPC record sent over a TCP connection exceeded 8 KB.

excess RPC
The sender of an RPC request or reply included leftover data beyond what the RPC parameters or result value
themselves consumed.

157

FIN advanced last seq
A TCP endpoint retransmitted a FIN with a higher sequence number than previously.

FIN after reset
A TCP endpoint sent a FIN after sending a RST.

FIN storm
The monitor saw a flurry of FIN packets all sent on the same connection. A “flurry” is defined as 1,000 packets
that arrived with less than 1 sec between successive FINs.Deficiency: Clearly, this numbers should be user-
controllable.

HTTP unknown method
The method in an HTTP request was not GET, POST or HEAD.

HTTP version mismatch
A persistent HTTP connection sent a different version number for a subsequent item than it did initially.

inappropriate FIN
A TCP endpoint sent a FIN before the connection was fully established.

multiple HTTP request elements
An HTTP request included multiple methods.

multiple RPCs
A TCP RPC stream included more than one remote procedure call.

NUL in line
A NUL (ASCII 0) was seen in a text stream that is expected to be free of NULs. Currently, the only such stream
is that associated with an FTP control connection.

originator RPCreply
The originator (and hence presumed client) of an RPC connection sent an RPC reply (either instead of a request,
or in addition to a request).

partial finger request
When a Finger connection terminated, it included a final lineof unanalyzed text because the text was not
newline-terminated.

partial ftp request
When an FTP connection terminated, it included a final line ofunanalyzed text because the text was not newline-
terminated.

partial ident request
When an IDENT connection terminated, it included a final lineof unanalyzed text because the text was not
newline-terminated.

partial portmapper request
A portmapper connection terminated with an unanalyzed request because the data stream was incomplete.

partial RPC
An RPC was missing some required header information due to truncation.

158

pending data when closed
A TCP connection closed even though not all of the data in it was analyzed due to a sequence hole.

possible split routing
Bro appears to be seeing only one direction of some bi-directional connections (§ 10.9, page 177). This can also
occur due to certain forms of stealth-scanning.

premature connection reuse
A TCP connection tuple is being reused less than 30 sec after its previous use. (The standard requires waiting
2 · MSL = 4 minutes [RFC793, p. 27].)

repeated SYNreply wo ack
A TCP responder that replied to an initial SYN with a SYN-ack has subsequently sent a SYNwithout an
acknowledgment.

repeated SYNwith ack
A TCP originator that sent an initial SYN has subsequently sent a SYN-ack.

responder RPCcall
The responder (and hence presumed server) of an RPC connection sent an RPC request (either instead of a reply,
or in addition to a reply).

rlogin text after rejected
An Rlogin client sent additional text to an Rlogin server after the server already presumably rejected the client’s
service request.

RPCrexmit inconsistency
An RPC call was retransmitted, and the retransmitted call differed from the original call. This could reflect an
attempt by an attacker to evade the monitor.Note: This type of inconsistency checking is not available for RPC
replies because the transmission of the reply in general marks the end of the RPC connection, and the monitor
deletes the connection state shortly afterward.

RST storm
The monitor saw a flurry of RST packets all sent on the same connection. SeeFIN storm for the definition of
“flurry.”

RST with data
A TCP RST packet included data. This actually is allowed by the specification [RFC1122, 4.2.2.12].Deficiency:
This event should include the data.

simultaneous open
The monitor saw a TCP simultaneous open, i.e., both endpoints sent initial SYNs to one another at the same
time. While the specification allows this [RFC793, p. 30], none of the protocols analyzed by Bro should be using
it.

spontaneous FIN
A TCP endpoint sent a FIN packet without sending any previouspackets. This event can reflect stealth-scanning,
but can also occur when Bro has recently started up and has notseen other traffic on a connection and hence
does not know that the connection already exists.

159

spontaneous RST
A TCP endpoint sent a RST packet without sending any previouspackets. As withspontaneous FIN , this
event can reflect either stealth scanning or a Bro start-up transient.

SYNafter close
A TCP endpoint sent a SYN (connection initiation) after sending a FIN (connection termination), but before the
connection fully closed.

SYNafter partial
A TCP endpoint in a “partial” connection (§ 10.12, page 177) sent a SYN.

SYNafter reset
A TCP endpoint sent a SYN after sending a RST (reset connection).

SYNinside connection
A TCP endpoint sent a SYN during a connection (or partial connection) on which it had already sent data.

SYNseq jump
A TCP endpoint retransmitted a SYN or a SYN-ack, but with a different sequence number.

SYNwith data
A TCP endpoint included data in a SYN packet it sent. Note, this can legitimately occur for T/TCP connections
[RFC1644].

TCP christmas
A TCP endpoint sent a SYN packet that included the RST flag (a nonsensical combination). The term “Christmas
packet” has been used in this context (particularly if otherflags are set, too) because the packet’s flags are “lit
up like a Christmas tree.”

UDPdatagram length mismatch
The length field in a UDP header did not match the length field inthe IP header. This could reflect an attempt
by an attacker to evade the monitor.

unpaired RPCresponse
An RPC reply was seen for which no request was seen. This eventcould reflect a Bro start-up transient (it started
running after the request was sent).

unsolicited SYNresponse
A TCP endpoint sent a SYN-ack without first receiving an initial SYN. This event could reflect a Bro start-up
transient.

7.24.5 Events handled byconn weird addl

conn weird addl (name: string, c: connection, addl: string)
Invoked for a few “weird” events that require an extra (string) argument to help clarify the event.Deficiency:

It would likely be very handy if the general “weird” event handling was more flexible, with the ability to have
various parameters associated with the events. Doing so will likely have to wait on general Bro mechanism for
dealing with default parameters and/or polymorphic functions and event handlers.

conn weird addl handles the following events, all of which have a default action of WEIRDFILE :

160

bad ident reply
A reply from an IDENT server was syntactically invalid.

bad ident request
A request to an IDENT server was syntactically invalid.

ident request addendum
An IDENT request included additional text beyond that forming the request itself.

7.24.6 Events handled byflow weird

flow weird (name: string, src: addr, dst: addr)
is invoked for “weird” events that cannot be associated witha particular connection, but only with a pair of

hosts, corresponding to a flow of packets fromsrc to dst . Presently, all of these events deal with fragments.

flow weird handles the following events:

excessively large fragment
A set of IP fragments reassembled to a maximum size exceeding64,000 bytes.Note: Sizes between 64,000 and
65,535 bytes are allowed, strictly speaking, but are highlyunlikely in legitimate traffic. Sizes above 65,535 bytes
generally represent attempted denial-of-service attacks, due to IP implementations that crash upon receiving
such impossibly-large fragment sets.

Default:WEIRDLOGALWAYS.

excessively small fragment
A fragment other than the last fragment in a set was less than 64 bytes in size.Note: The standard allows such
small fragments, but their presence may reflect an attacker attempting to evade the monitor by splitting header
information across multiple fragments.

Default:WEIRDLOGALWAYS.

fragment inconsistency
A fragment overlaps with a previously sent fragment, and thetwo disagree on data they share in common. This
event could reflect an attacker attempting to evade the monitor; it can also occur because Bro keeps previous
fragments indefinitely (Deficiency: it needs to provide a means for flushing old fragments, otherwise it becomes
vulnerable to a state-holding attack), and occasionally a fragment will overlap with one sent much earlier and
long-since forgotten by the endpoints.

Default:WEIRDLOGALWAYS.

fragment overlap
A fragment overlaps with a previously sent fragment. As forfragment inconsistency , this event can
occur due to Bro keeping previous fragments indefinitely. This event does not in general reflect a possible
attempt at evasion.

Default:WEIRDLOGALWAYS.

fragment protocol inconsistency
Two fragments were seen for the same flow and IP ID which differed in their transport protocol (e.g., UDP,
TCP). According to the specification, this is allowed [RFC791, p. 24], but its use appears highly unlikely.

Default:WEIRDFILE , because it is difficult to see how an attacker can exploit this anomaly.

161

fragment size inconsistency
A “last fragment” was seen twice, and the two disagree on how large the reassembled datagram should be. This
event could reflect an attacker attempting to evade the monitor.

Default:WEIRDFILE , since it is more likely that this occurs due to a high volume flow of fragments wrapping
the IP ID space than due to an actual attack.

fragment with DF
A fragment was seen with the “Don’t Fragment” bit set in its header. While strictly speaking this is not illegal,
and not impossible (a router could have fragmented a packet and then decided that the fragments should not be
further fragmented), its presence is highly unusual.

Default:WEIRDFILE , because it’s difficult to see how this could reflect malicious activity.

incompletely captured fragment
A fragment was seen whose length field is larger than the fragment datagram appearing on the monitored link.

Default:WEIRDLOGALWAYS.

7.24.7 Events handled bynet weird

net weird (name: string)
is invoked for “weird” events that cannot be associated witha particular connection or set of hosts. Except as
noted, the default action for all such events isWEIRDFILE .

net weird handles the following events:

bad IP checksum
A packet had a bad IP header checksum.

bad TCP header len
The length of the TCP header (which is itself specified in the header) was smaller than the minimum allowed
size.

internally truncated header
A captured packet with a valid IP length field was smaller as actually recorded, such that the captured version
of the packet was illegally small. This event may reflect an error in Bro’s packet capture hardware or software.

Default:WEIRDLOGALWAYS, because this event can indicate a basic problem with Bro’s packet capture.

truncated IP
A captured packet either was too small to include a minimal IPheader, or the full length as recorded by the
packet capture library was smaller than the length as indicated by the IP header.

truncated header
An IP datagram’s header indicates a length smaller than thatrequired for the indicated transport type (TCP, UDP,
ICMP).

162

7.24.8 Events generated by the standard scripts

The following events are generated by the standard scripts themselves:

bad pm port
Seepm bad port . Handled byconn weird addl , where the extra parameter is the text"port < bad-
port>" .

Land attack
A TCP connection attempt was seen with identical initiator and responder addresses and ports. This event
likely reflects an attempted denial-of-service attack known as a “Land” attack. Seecheck spoof . Handled
by conn weird .

7.24.9 Additional handlers for “weird” events

In addition to the above, generalized events, Bro includes two specific events that are defined by themselves so they
can include additional parameterization:

rexmit inconsistency (c: connection, t1: string, t2: string)
Invoked when a retransmission associated with connectionc differed in its data from the contents transmitted
previously.t1 gives the original data andt2 the different retransmitted data.

This event may reflect an attacker attempting to evade the monitor. Unfortunately, however, experience has
shown that(i) inconsistent retransmissions do in fact happen due to (appalling) TCP implementation bugs, and
(ii) once they occur, they tend to cascade, because often the source of the bug is that the two endpoints have
become desynchronized.

The handler logs the message in the format" id rexmit inconsistency (<t1>) (<t2>)" . However,
the handler only logs the first instance of an inconsistency,due to the cascade problem mentioned above.

Deficiency: The handler is not told which of the two connection endpoints was the faulty transmitter.

ack above hole (c: connection, t1: string, t2: string)
Invoked when Bro sees a TCP receiver acknowledge data above asequence hole. In principle, this should never
occur. Its presence generally means one of two things:(i) a TCP implementation with an appalling bug (these
definitely exist), or(ii) a packet drop by Bro’s packet capture facility, such that it never saw the data now being
acknowledged.

Because of the seriousness of this latter possibility, the handler logs a message"ack above a hole" . Note:
You can often distinguish between a truly broken TCP acknowledgment and Bro dropping packets by the fact
that in the latter case you generally see a cluster of ack-above-a-hole messages among otherwise unrelated
connections.

Deficiency: The handler is not told which of the two connection endpoints sent the acknowledgment.

163

7.25 Theicmp Analyzer

7.26 Thestepping Analyzer

7.27 Thessh-stepping Module

7.28 Thebackdoor Analyzer

7.29 Theinterconn Analyzer

164

Chapter 8

Signatures

8.1 Overview

In addition to the policy language, Bro provides another language which is specifally designed to definesignatures.
Signatures precisly describe how network traffic looks for certain, well-known attacks. As soon as a attack described
by a signature is recognized, Bro may generate an event for this signature matchwhich can then be analyzed by a
policy script. To define signatures, Bro’s language provides several powerful constructs like regular expressions§ 3.6,
page 25 and dependencies between multiple signatures.

Signatures are independent of Bro’s policy scripts and, therefore, are put into their own file(s). There two ways
to specify which files contain signatures: By using the-s flag when you invoke Bro, or by extending the Bro vari-
ablesignatures files using the+= operator. If a signature file is given without a path, it is searched along
$BROPATH. The default extension of the file name is.sig which Bro appends automatically.

8.2 Signature language

Each individual signature has the format

signature id { attribute-set }

id is an unique label for the signature. There are two types of attributes:conditionsandactions. The conditions
definewhenthe signature matches, while the actions declarewhat to doin the case of a match. Conditions can be
further divided into four types:header, content, dependency, andcontext. We will discuss these in more detail in the
following subsections.

This is an example of a signature:

signature formmail-cve-1999-0172 {
ip-proto == tcp
dst-ip == 1.2.0.0/16
dst-port = 80
http /.*formmail.*\?.*recipient=[ˆ&]*[;|]/
event "formmail shell command"
}

165

8.2.1 Conditions

Header conditions

Header conditions limit the applicability of the signatureto a subset of traffic that contains matching packet headers.
For TCP, this match is performed only for the first packet of a connection. For other protocols, it is done on each
individual packet. There are pre-defined header conditionsfor some of the most used header fields:

dst-ip comp address-list
Destination address of IP packet (may include CIDR masks forspecifying networks)

dst-port comp integer-list
Destination port of TCP or UDP packet

ip-proto comp protocol-list
IP protocol;protocolmay betcp , udp , or icmp .

src-ip comp address-list
Source address of IP packet (may include CIDR masks for specifying networks)

src-port comp integer-list
Source port of TCP or UDP packet

compis one of==, != , <, <=, >, >=. All lists are comma-separated values of the given type which are sequentially
compared against the corresponding header field. If at leastone of the comparisions evaluates to true, the whole
header condition matches (exception: ifcompis != , the header condition only matches ifall values differ).addressis
an dotted IP address optionally followed by a CIDR/mask to define a subnet instead of an individual address.protocol
is either one ofip , tcp , udp andicmp , or an integer.

In addition to this pre-defined short-cuts, a general headercondition can be defined either as

header proto[offset: size] comp value-list

or as

header proto[offset: size] & integer comp value-list

This compares the value found at the given position of the packet header with a list of values.offsetdefines the
position of the value within the header of the protocol defined by proto (which canip , tcp , udp oricmp . sizeis
either 1, 2, or 4 and specifies the value to have a size of this many bytes. If the optinal& integer is given, the
packet’s value is first masked with theintegerbefore it is compared to the value-list.compis one of==, != , <, <=, >,
>=. value-listis a list of comma-separated integers similar to those described above. The integers within the list may
be followed by an additional/ mask wheremaskis a value from 0 to 32. This correponds to the CIDR notation for
netmasks and is translated into a corresponding bitmask which is applied to the packet’s value prior to the comparision
(similar to the optional& integer).

Putting all together, this is an example which is aequivalent to dst-ip == 1.2.3.4/16, 5.6.7.8/24 :

header ip[16:4] == 1.2.3.4/16, 5.6.7.8/24

166

Content conditions

Content conditions are defined by regular expressions. We differentiate two kinds of content conditions: first, the
expression may be declared with thepayload statement, in which case it is matched against the raw payload of a
connection (for reassembled TCP streams) or of a each packet. Alternatively, it may be prefixed with an analyzer-
specific label, in which case the expression is matched against the data as extracted by the corresponding analyzer.

A payload condition has the form

payload / regular expression/

Currently, the following analyzer-specific content conditions are defined (note that the corresponding analyzer has
to be activated by loading its policy script):

http-request / regular expression/
The regular expression is matched against decoded URIs of the HTTP requests.

http-request-header / regular expression/
The regular expression is matched against client-side HTTPheaders.

http-reply-header / regular expression/
The regular expression is matched against server-side HTTPheaders.

ftp / regular expression/
The regular expression is matched against the command line input of FTP sessions.

finger / regular expression/
The regular expression is matched against the finger requests.

For example,http /(etc(passwd|shadow)/ matches any URI containing eitheretc/passwd or
etc/shadow .

Dependency conditions

To define dependencies between different signatures, thereare two conditions:

requires-signature [! id]
Defines the current signature to match only if the signature given byid matches for the same connection. Using
‘ ! ’ negates the condition: The current signature only matchesif id does not match for the same connection (this
decision is necessarily deferred until the connection terminates).

requires-reverse-signature [! id]
Similar to requires-signature , but id has to match for the other direction of the same connections than
the current signature. This allows to model the notion of requests and replies.

Context conditions

Context conditions pass the match decision on to various other components of Bro. They are only evaluated if all other
conditions have already matched. The following context conditions are defined:

167

type signature_state: record {
id: string; # ID of the signature
conn: connection; # Current connection
is_orig: bool; # True if current endpoint is originator
payload_size: count; # Payload size of the first pkt of curr. endpoint
};

Figure 8.1: Definition of thesignature state record.

eval policy function
The given policy function is called and has to return a boolean indicating the match result. The function has to be
of the typefunction cond(state: signature state): bool . See Figure 8.2.1 for the definition
of signature state .

ip-options
Not implemented currently.

payload-size comp integer
Compares the integer to the size of the payload of a packet. For reassembled TCP streams, the integer is com-
pared to the size of the first in-order payload chunk. Note that the latter is not well defined.

same-ip
Evaluates to true if the source address of the IP packets equals its destination address.

tcp-state state-list
Poses restrictions on the current TCP state of the connection. state-list is a comma-separated list of
established (the three-way handshake has already been performed),originator (the current data is
send by the originator of the connection), andresponder (the current data is send by the responder of the
connection).

8.2.2 Actions

Actions define what to do if a signature matches. Currently, there is only one action defined:event string raises
a signature match event. The event handler has the following type:

event signature match(state: signature state, msg: string, data:
string)

See Figure 8.2.1 for a description ofsignature state . The given string is passed asmsg, and data is the
current part of the payload that has eventually lead to the signature match (this may be empty for signatures without
content conditions).

8.3 snort2bro

The open-source IDS Snort provides an extensive library of signatures. The Python script snort2bro converts Snort’s
signature into Bro signatures. Due to different internal architectures of Bro and Snort, it is not always possible to keep

168

the exact semantics of Snort’s signatures, but most of the time it works very well.
To convert Snort signatures into Bro’s format,snort2bro needs a workable Snort configuration file

(snort.cfg) which, in particular, defines the variables used in the Snort signatures (usally things like
$EXTERNALNET or $HTTP SERVERS). The conversion is performed by callingsnort2bro [-I dir]
snort.cfg where the directory optionally given by-I contains the files imported by Snort’sinclude statement.
The converted signature set is written to standard output and may be redirected to a file. This file can then be evaluated
by Bro using the-s flag or thesignatures files variable.

Deficiency:snort2bro does not know about some of the newer Snort signature optionsand ignores them (but it
gives a warning).

169

Chapter 9

Interactive Debugger

9.1 Overview

Bro’s interactive debugger is intended to aid in the development, testing, and maintenance of policy scripts. The de-
bugger’s interface has been modeled after the populargdb debugger; the command syntax is virtually identical. While
at present the Bro debugger supports only a small subset ofgdb ’s features, these were chosen to be the most com-
monly used commands. Additional features beyond those ofgdb , such as wildcarding, have been added to specifically
address needs created by Bro policy scripts.

9.2 A Sample Session

The transcript below should look very familiar to those familiar with gdb . The debugger’s command prompt accepts
debugger commands; before each prompt, the line of policy code that is next to be executed is displayed.

First we activate the debugger with the-d command-line switch.

bobcat:˜/bro/bro$./bro -d -r slice.trace mt
Policy file debugging ON.
In bro_init() at policy/ftp.bro:437
437 have_FTP = T;

Next, we set a breakpoint in theconnection finished event handler [reference this somehow]. A breakpoint
causes the script’s execution to stop when it reaches the specified function. In this case, there are many event handlers
for theconnection finished event, so we are given a choice.

(Bro [0]) break connection_finished
Setting breakpoint on connection_finished:

There are multiple definitions of that event handler.
Please choose one of the following options:
[1] policy/conn.bro:268
[2] policy/active.bro:14
[3] policy/ftp.bro:413

170

[4] policy/demux.bro:40
[5] policy/login.bro:496
[a] All of the above
[n] None of the above
Enter your choice: 1
Breakpoint 1 set at connection_finished at policy/conn.br o:268

Now we resume execution; when the breakpoint is reached, execution stops and the debugger prompt returns.

(Bro [1]) continue
Continuing.
Breakpoint 1, connection_finished(c = ’[id=[orig_h=1.0. 0.163,
orig_p=2048/tcp, resp_h=1.0.0.6, resp_p=23/tcp], orig= [size=0,
state=5], resp=[size=46, state=5], start_time=92972969 6.316166,
duration=0.0773319005966187, service=, addl=, hot=0]’) at
policy/conn.bro:268
In connection_finished(c = ’[id=[orig_h=1.0.0.163, orig _p=2048/tcp,
resp_h=1.0.0.6, resp_p=23/tcp], orig=[size=0, state=5] , resp=[size=46,
state=5], start_time=929729696.316166, duration=0.077 3319005966187,
service=, addl=, hot=0]’) at policy/conn.bro:268
268 if (c$orig$size == 0 || c$resp$size == 0)

We now step through a few lines of code and into therecord connection call.

(Bro [2]) step
274 record_connection(c, "finished");
(Bro [3]) step
In record_connection(c = ’[id=[orig_h=1.0.0.163, orig_p =2048/tcp,
resp_h=1.0.0.6, resp_p=23/tcp], orig=[size=0, state=5] , resp=[size=46,
state=5], start_time=929729696.316166, duration=0.077 3319005966187,
service=, addl=, hot=0]’, disposition = ’finished’) at
policy/conn.bro:162
162 local id = c$id;
(Bro [4]) step
163 local local_init = to_net(id$orig_h) in local_nets;

We now print the value of theid variable, which was set in the previously executed statement local id = c$id; .
We follow that with a backtrace (bt) call, which prints a trace of the currently-executing functions and event handlers
(along with their actual arguments). We then remove the breakpoint and continue execution to its end (the remaining
output has been trimmed off).

(Bro [5]) print id
[orig_h=1.0.0.163, orig_p=2048/tcp, resp_h=1.0.0.6, re sp_p=23/tcp]
(Bro [6]) bt
#0 In record_connection(c = ’[id=[orig_h=1.0.0.163, orig _p=2048/tcp,

resp_h=1.0.0.6, resp_p=23/tcp], orig=[size=0, state=5] ,
resp=[size=46, state=5], start_time=929729696.316166,
duration=0.0773319005966187, service=, addl=, hot=0]’, disposition =

171

’finished’) at policy/conn.bro:163
#1 In connection_finished(c = ’[id=[orig_h=1.0.0.163, or ig_p=2048/tcp,

resp_h=1.0.0.6, resp_p=23/tcp], orig=[size=0, state=5] ,
resp=[size=46, state=5], start_time=929729696.316166,
duration=0.0773319005966187, service=, addl=, hot=0]’) at
policy/conn.bro:274

(Bro [7]) delete
Breakpoint 1 deleted
(Bro [8]) continue
Continuing.
...

9.3 Usage

The Bro debugger is invoked with the-d command-line switch. It is strongly recommended that the debugger be used
with a tcpdump capture file as input (the-r switch) rather than in “live” mode, so that results are repeatable.

Execution tracing is a feature which generates a complete record of which code statements are executed during a
given run. It is enabled with the-t switch, whose argument specifies a file which will contain thetrace.

Debugger commands all are a single word, though many of them take additional arguments. Commands may be
abbreviated with a prefix (e.g.,fin for finish); if the same prefix matches multiple commands, the debuggerwill
list all that match. Certain very frequently-used commands, such asnext , have been given specific one-character
shortcuts (in this case,n). For more details on all the debugger commands, see the Reference in section 9.5, below.

The debugger’s prompt can be activated in three ways. First,when the-d switch is supplied, Bro stops in the
bro init initialization function (more precisely, after global-scope code has been executed; see section 9.4). It is
also activated when a breakpoint is hit. Breakpoints are setwith thebreak command (see the Reference). The final
way to invoke the debugger’s prompt is to interrupt execution by pressing Ctrl-C (sending an Interrupt signal to the
process). Execution will be suspended after the currently-executing line is completed.

9.4 Notes and Limitations

• Statements at global scope, i.e., those executed before thebro init function, may not be debugged at present.
This is because those statements load declarations for other functions needed for the debugger to function
properly.

9.5 Reference

Summary of Commands
Note: all commands may be abbreviated with a unique prefix. Shortcuts below are special exceptions to this rule.

172

Command Shortcut Description

help Get help with debugger commands
quit Exit Bro
next n Step to the following statement, skipping function calls
step s Step to following statements, stepping in to function calls

continue c Resume execution of the policy script
finish Run until the currently-executing function completes
break b Set a breakpoint

condition Set a condition on an existing breakpoint
delete d Delete the specified breakpoints; delete all if no arguments

disable Turn off the specified breakpoint; do not delete permanently
enable Undo a prior ‘disable’ command

info Get information about the debugging environment
print p Evaluate an expression and print the result

set Alias for ‘print’
backtrace bt Print a stack trace

frame Select frame number N
up Select the stack frame one level up from the current one

down Select the stack frame one level down from the current one
list l Print source lines surrounding specified context

trace Turn on or off execution tracing

Getting Help

help Help for each command may be invoked with thehelp command. Calling the command with no arguments
displays a one-line summary of each command.

Command-Line Options

-d switch The-d switch enables the Bro script debugger.

-t switch The -t enables execution tracing. There is an argument to the switch, which indicates a file that will
contain the result of the trace. Trace output consists of thesource code lines executed, indented for each nested
function invocation.

Example. The following command invokes Bro, usingtcpdump file for the input packets and outputting
the result of the trace toexecution trace .

./bro -t execution_trace -r tcpdump_file policy_script.b ro

Example. If the argument to-t is a single dash character (“- ”), then the trace output is sent tostderr .

./bro -t - -r tcpdump_file policy_script.bro

173

Example. Lastly, execution tracing may be combined with the debugger. Here we send output tostderr , so
it will be intermingled with the debugger’s output. Tracingmay be turned off and on in the debugger using the
trace command.

./bro -d -t - -r tcpdump_file policy_script.bro

Running the Script

quit Exit Bro, aborting execution of the currently executing script.

restart (r) (Currently Unimplemented)Restart the execution of the script, rewinding to the beginning of the input
file(s), if appropriate. Breakpoints and other debugger state are preserved.

continue (c) Resume execution of the script file. The script will continuerunning until interrupted by a breakpoint or
a signal.

next (n) Execute one statement, without entering any subroutines called in that statement.

step (s) Execute one statement, but stop on entry to any called subroutine.

finish Run until the currently executing function returns.

Breakpoints

break (b) Set a breakpoint. A breakpoint suspend execution when execution reaches a particular location and returns
control to the debugger. Breakpoint locations may be specified in a number of ways:

break With no argument, the current line is used.
break [FILE:]LINE The specified line in the specified file; if no policy file is specified, the

current file is implied.
break FUNCTION The first line of the specified function or event handler. If more than one

event handler matches the name, a choice will be presented.
break WILDCARD Similar to FUNCTION, but a POSIX-compliant regular expression (see

theregex(3) man page)is supplied, which is matched against all func-
tions and event handlers. One exception to the the POSIX syntax is that,
as in the shell, the* character may be used to match zero or more of any
character without a preceding period character (.).

condition N expressionThe numeric argumentN indicates which breakpoint to add a condition to, and the expres-
sion is the conditional expression. A breakpoint with a condition will only stop execution when the supplied
condition is true. The condition will be evaluated in the context of the breakpoint’s location when it is reached.

enable With no arguments, enable all breakpoints previously disabled with thedisable command. If numeric
arguments separated by spaces are provided, the breakpoints with those numbers will be enabled.

disable With no arguments, disable all breakpoints. Disabled breakpoints will not stop execution, but will be retained
to be enabled later. If numeric arguments separated by spaces are provided, the breakpoints with those numbers
will be disabled.

174

delete (d) With no arguments, permanently delete all breakpoints. If numeric arguments separated by spaces are
provided, the breakpoints with those numbers will be deleted.

Debugger State

info Give information about the current script and debugging environment. A subcommand should follow theinfo
command to indicate which information is desired. At present, the following subcommands are available:

info break List all breakpoints and their status

Inspecting Program State

print (p) / set The print command and its alias,set , are used to evaluate any expression in the policy script
language. The result of the evaluation is printed out. Results of the evaluation affect the current execution
environment; expressions may include things like assignment. The expression is evaluated in the context of the
currently selected stack frame. Theframe , up , anddown commands (below) are used to change the currently
selected frame, which defaults to the innermost one.

backtrace (bt) Print a description of all the stack frames (function invocations) of the currently executing script.
With no arguments, prints out the currently selected stack frame.
With a numeric argument±N , prints the innermostN frames if the argument is positive, or the outermostN

frames if the argument is negative.

frame With no arguments, prints the currently selected frame.
With a numeric argumentN , selects frameN . Frame numbers are numbered inside-out from 0; the

up Select the stack frame that called the currently selected one. If a numeric argumentN is supplied, go up that many
frames.

down Select the stack frame called by the currently selected one.If a numeric argumentN is supplied, go down that
many frames.

list (l) With no argument, print the ten lines of script source code following the previous listing. If there was no
previous listing, print ten lines surrounding the next statement to be executed. If an argument is supplied, ten
lines are printed around the location it describes. The argument may take one of the following forms:

[FILE:]LINE The specified line in the specified file; if no policy file is specified, the
current file is implied.

FUNCTION The first line of the specified function or event handler. If more than one
event handler matches the name, a choice will be presented.

±N With a numeric argument preceded by a plus or minus sign, the line at
the supplied offset from the previously selected line.

175

Chapter 10

Missing Documentation

This chapter holds stubs for subjects that have yet to be documented. Some of these are actually already somewhat
covered elsewhere in the manual. In addition, a major missing piece for the manual is the Bro language itself; below
we mention some Bro language topics that come up elsewhere inthe current version of the manual.

10.1 The use ofprefixes

10.2 The tcpdump save file that Bro writes

10.3 Thebro.init initialization file

10.4 Assignment operators such as+=

10.5 The notion of redefinition/refinement

10.6 The logging model

176

10.7 Timer management

10.8 SYN-FIN filtering

10.9 Split routing

10.10 Scan dropping

10.11 Operator precedence

10.12 Partial connections

10.13 Packet drops

10.14 The@load directive

10.15 Global statements

10.16 Inserting tables into tables

177

10.17 Demultiplexing

10.18 Bro init file

10.19 Hostnames vs. addresses

10.20 The hot-report script

10.21 Use of libpcap/BPF

[MJ93, MLJ94]

10.22 The problem of evasion

[PN98]

10.23 Backscatter

10.24 Playing back traces

10.25 Discarders

10.26 Differences between this release and the previous one

178

10.27 Alert cascade

10.28 The need for subtyping

E.g.,src addr vs.dst addr , perhaps using attributes.

10.29 The need for CIDR masks

10.30 The wish list

10.31 Known bugs

179

Bibliography

[RFC2373] R. Hinden and S. Deering, “IP Version 6 AddressingArchitecture,” RFC 2373, Jul. 1998.

[MJ93] S. McCanne and V. Jacobson, “The BSD Packet Filter: A New Architecture for User-level Packet Cap-
ture,” Proc. 1993 Winter USENIX Conference, San Diego, CA.

[MLJ94] S. McCanne, C. Leres and V. Jacobson,libpcap , available via anonymous ftp to ftp.ee.lbl.gov, 1994.

[Pa98] V. Paxson, “Bro: A System for Detecting Network Intruders in Real-Time,” Proc. 7th USENIX Security
Symposium, Jan. 1998.

[Pa99] V. Paxson, “Bro: A System for Detecting Network Intruders in Real-Time,”Computer Networksspecial
issue on intrusion detection, 31(23–24), pp. 2435–2463, Dec. 1999.

[PN98] T. Ptacek and T. Newsham, “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detec-
tion,” Secure Networks, Inc., http://www.aciri.org/vern/Ptacek-Newsham-Evasion-98.ps, Jan. 1998.

[RFC791] J. Postel, “Internet Protocol,” RFC 791, Sep. 1981.

[RFC793] J. Postel, “Transmission Control Protocol,” RFC 793, Sep. 1981.

[RFC854] J. Postel and J. Reynolds, “Telnet Protocol Specification,” RFC 854, May 1983.

[RFC855] J. Postel and J. Reynolds, “Telnet Option Specifications,” RFC 855, May 1983.

[RFC959] J. Postel and J. Reynolds, “File Transfer Protocol(FTP),” RFC 959, Oct. 1985.

[RFC1013] R. Scheifler, “X Window System Protocol, version 11: Alpha update,” RFC 1013, Apr. 1987.

[RFC1094] Sun Microsystems, “NFS: Network File System Protocol specification,” RFC 1094, Mar. 1989.

[RFC1122] B. Braden, “Requirements for Internet hosts - communication layers,” RFC 1122, Oct. 1989.

[RFC1282] B. Kantor, “BSD Rlogin,” RFC 1282, Dec. 1991.

[RFC1288] D. Zimmerman, “The Finger User Information Protocol,” RFC 1288, Dec. 1991.

[RFC1413] M. St. Johns, “Identification Protocol,” RFC 1413, Jan. 1993.

[RFC1644] B. Braden, “T/TCP – TCP Extensions for Transactions Functional Specification,” RFC 1644, Jul. 1994.

[RFC1813] B. Callaghan, B. Pawlowski, P. Staubach, “NFS Version 3 Protocol Specification,” RFC 1813, June 1995.

180

[RFC1831] R. Srinivasan, “RPC: Remote Procedure Call Protocol Specification Version 2,” RFC 1831, Aug. 1995.

[RFC1832] R. Srinivasan, “XDR: External Data Representation Standard,” RFC 1832, Aug. 1995.

[RFC1939] J. Myers and M. Rose, “Post Office Protocol - Version 3,” RFC 1939, May 1996.

[RFC1945] T. Berners-Lee, R. Fielding and H. Frystyk, “Hypertext Transfer Protocol – HTTP/1.0,” RFC 1945,
May 1996.

[RFC2616] J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, “Hypertext Transfer Protocol – HTTP/1.1,”
RFC 2626, Jun. 1999.

[YKSRL00] T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne and S.Lehtinen, “SSH Connection Protocol,” Internet Draft
draft-ietf-secsh-connect-07.txt, May 2000.

[SSLv2] Kipp E.B. Hickman, “The SSL Protocol,” Netscape Communications Corp.
http://wp.netscape.com/eng/security/SSL2.html, February 1995.

[SSLv30] Alan O. Freier, Philip Karlton, Paul C. Kocher, “The SSL Protocol Version 3.0,” Internet Draftdraft-
freier-ssl-version3-02.txt, November 1996.

[TLSv1] T. Dierks, C. Allen, “ The TLS Protocol Version 1.0,”RFC 2246, January 1999.

[SSL-FIPS] Nelson Bolyard, Wan-Teh Chang, “FIPS SSL CipherSuites,”http://www.mozilla.org/projects/security/pki/nss/ssl/fips-
ssl-ciphersuites.html, June 2001.

[SSL-AES] P. Chown, “Advanced Encryption Standard (AES) Ciphersuites for Transport Layer Security (TLS),”
RFC 3268, June 2002.

[TLS-56] John Banes, Richard Harrington, “56-bit Export Cipher Suites For TLS,” Internet Draftdraft-ietf-tls-56-
bit-ciphersuites-00.txt, April 1999.

[X509] R. Housley, W. Polk, W. Ford, D. Solo, “Internet X.509Public Key Infrastructure Certificate and Certifi-
cate Revocation List (CRL) Profile,” RFC 3280, June 2002.

181

Index

! operator, 46
!in operator, 51
%modulus operator, 23
|| short-circuit “or”, 22, 47
&& short-circuit “and”, 22, 47
! “not” operator, 22
(operator, 50
) operator, 50
+ operator, 47
++ operator, 46
+ addition operator, 23, 28, 47
+ unary operator, 23
- subtraction operator, 23, 28, 47
- unary operator, 23, 27
* multiplication operator, 23, 28, 47
/ division operator, 23, 28, 47
+= operator, 93
- operator, 46
-- operator, 46
: operator, 48
= operator, 48
== equality operator, 24, 26, 47, 51
! ˜ exact match negation, 26
˜ exact pattern match operator, 26
!= inequality operator, 24, 26, 47, 51
< less-than operator, 24, 48
<= less-or-equal operator, 24, 48
> greater-than operator, 24, 48
>= greater-or-equal operator, 24, 48
? operator, 48
?$ record field test, 52
[operator, 50, 52
$ record field access operator, 52
$ record field access operator, 32
%format, 87
\a alert escape, 24
\a bell escape, 24
\b backspace escape, 24
\f formfeed escape, 24
\n newline escape, 24
%modulus operator, 47
\r carriage return escape, 24
\t tab escape, 24
] operator, 50, 52
4Dgifts username, 121

aborted execution, 18

absolute time, 27
access

allowable /16 network pairs, 107
allowable address pairs, 107
allowable services, 108
fatal inbound services, 109
forbidden attempted services, 109
forbidden inbound services, 109
forbidden services, 109
sensitive /24 destination networks, 108
sensitive /24 source networks, 107
sensitive destination addresses, 107
sensitive source addresses, 107
service allowed to a particular host, 108
service allowed to particular host pairs, 108

account tried event, 114
accounts tried variable, 77
ack above a hole (possible packet drop message),

163
ack above hole event, 95, 163
acknowledgment holes, 163
actions, 149, 155

SIG FILE , 149
SIG IGNORE, 149
SIG LOG, 149
SIG QUIET, 149
WEIRDFILE , 155
WEIRDIGNORE, 155
WEIRDLOGALWAYS, 155
WEIRDLOGONCE, 155
WEIRDLOGPERCONN, 155
WEIRDLOGPERORIG, 155
WEIRDUNSPECIFIED, 155

activating encryption event, 142
active module, 117
active conn variable, 57, 117
active connection function, 85
active connection reuse (“weird” event), 156
active file function, 85
actually rejected PTR anno variable, 64
add keyword, 45
add statement, 45
&add func attribute, 56
add interface function, 85
add tcpdump filter function, 85
addition

182

numeric, 23
temporal, 28

additional information associated with a connection, 98,
103

addl , 98
connection field, 98

addl web variable, 77, 113
addr , seetypes,addr
address masking, 29, 88, 91
address scanning, 112
address type, 29

constants, 29
operators, 29

addresses
hot destinations, 107
hot sources, 107
in a connection, 101
local, 105–106
mapping to hostnames, 20
neighbor, 106

addrs , 119
dns mapping field, 119

alert action filters variable, 57
alert file variable, 57
allow 16 net pairs variable, 67, 107
allow excessive ntp requests variable, 74
allow pairs variable, 67, 107
allow PTR scans variable, 65
allow service pairs variable, 67
allow services variable, 67, 108
allow services pairs variable, 108
allow services to variable, 67, 108
allow spoof services variable, 67, 107
allowable /16 network pairs, 107
allowable address pairs, 107
altering log files, 133
always hot ids variable, 68, 121
always hot login ids variable, 74, 136
analy analyzer, 148
analysis

bidirectional vs. unidirectional, 159
off-line, 16, 17, 89, 105
on-line, 16, 17, 84, 89, 105

analyzers, 92–164
@load , 92
activating, 92
analy , 148
application-specific, 120–147
conn , 95
filtering, 93–94
finger , 120

event handlers, 120
variables, 120

ftp , 122
event handlers, 126–127

functions, 125
variables, 123–125

generic, 95–105
hot , 106

functions, 110
variables, 106–110

http , 127
event handlers, 128
variables, 127–128

ident , 128
event handlers, 129
variables, 129

instantiating, 92
loading, 92
login , 130

event handlers, 138–142
functions, 137–138
variables, 131–136

portmapper , 142
event handlers, 146–147
functions, 144–145
variables, 143–144

print-filter , 94
scan , 112

event handlers, 114
functions, 114
variables, 112–113

signature , 148
site , 105
site-specific information, 105–106
SSL, 149

event handlers, 152–154
variables, 151–152

tcp , 100
udp , 100

&& “and” operator, 22, 47
anon log variable, 57
anonymize ip addr variable, 62
anonymous functionexpression, 48
anticode.com, 133
“any” type, 42

replacing with union type, 88
any RPCokay variable, 75, 144
appending to a file, 89
arithmeticexpression, 47
array

associative, 33
multi-dimensional, 34

as, 39
RLIMIT NOFILE, 39

ASCII
as usual character set, 25

assigning records, 32–33
assignmentexpression, 48
associative array, 33

183

attack
Land, 110

attackers
weenie, 121

attacks
smurf, 133

ATTEMPTINTERVAL internal variable, 99
attempted connections, 99
attempted services

forbidden, 109
attributes, 55

&add func , 56
&create expire , 36
&default , 35
&delete func , 56
&expire func , 36
&read expire , 36
record fields, 32
&redef , 56
&write expire , 36

auth error (RPC status code), 146
auth-failed/ authentication annotation, 141
auth/ authentication annotation, 141
authentication

accepted, 141
rejected, 141
skipped, 141

authentication annotations, 129, 139–141
auth-failed/ , 141
auth/ , 141
confused/ , 139, 140
ident/ , 129
(skipped) , 141

authentication dialog, 87, 90, 130, 131
evasion, 132

authentication accepted event, 141
authentication rejected event, 141
authentication skipped event, 141
avoiding processing, 90

backdoor
avoiding false positives, 133
prompts, 133
triggered by ephemeral port, 134
triggered by terminal type, 133

backdoor annotate standard ports variable, 59
backdoor demux disabled variable, 58
backdoor demux skip tags variable, 58
backdoor ignore dst addrs variable, 58
backdoor ignore ports variable, 58
backdoor ignore src addrs variable, 58
backdoor log variable, 58
backdoor min 7bit ascii ratio variable, 58
backdoor min bytes variable, 58
backdoor min normal line ratio variable, 58
backdoor min num lines variable, 58

backdoor prompts variable, 73, 133
backdoor standard ports variable, 58
backdoor stat backoff variable, 59
backdoor stat period variable, 58
backscatter ports variable, 78
backspace character, 86
bad address mask

run-time error, 88
bad fmt date argument

run-time error, 87
bad fmt editing character

run-time error, 86
bad fmt field width

run-time error, 86
bad fmt floating-point argument

run-time error, 87
bad fmt format specifier

run-time error, 87
bad fmt integer argument

run-time error, 87
bad fmt precision

run-time error, 86
bad format , 87
bad length argument (not a table or set)

run-time error, 88
bad second argument to mask addr() , 88
format conversion error

bad time , 87
bad type for Date format , 87
bad type for floating-point format , 87
bad type for integer format , 87
bad HTTP reply (“weird” event), 157
bad HTTP version (“weird” event), 157
bad ICMP checksum (“weird” event), 157
bad ident reply (“weird” event), 160
bad ident request (“weird” event), 161
bad IP checksum (“weird” event), 162
bad option event, 141
bad option termination event, 141
bad pm port (“weird” event), 163
bad rlogin prolog (“weird” event), 157
bad RPC(“weird” event), 157
bad RPCprogram (“weird” event), 157
bad SYNack (“weird” event), 157
bad TCP checksum (“weird” event), 157
bad TCP header len (“weird” event), 162
bad UDPchecksum (“weird” event), 157
baroque SYN(“weird” event), 157
beginning time of a connection, 98, 101
bidirectional vs. unidirectional analysis, 159
big endian, 87, 148
/bin/eject exploit, 131
BIND

non-blocking DNS lookups, 13
blank in HTTP request (“weird” event), 157

184

bool , seetypes,bool
booleans, 22
Bourne shell, 90
BPF (Berkeley Packet Filter)

tuning, 13
BPF buffers

ensuring they are large, 13
break keyword, 45
break statement, 45
Bro

checkpointing, 18
execution aborted, 18
flags

-F , 18
-O , 18
-P , 18, 118
-W, 18
-f , 17
-h , 17
-i , 17
-p , 17
-r , 17
-s , 17
-v , 18
-w , 18

installing, 12
interactive use, 14
not running as root, 13
optimizer, 18
private caches, 18
references, 10
running, 12
search path, 19
shadow, 94
source code, 12
system configuration, 13
usage, 17
version, 18
watchdog, 18
web page, 12
wedging, 18

Bro bugs/limitations
causing “weird” events, 154

.bro suffix, 19

.bro-dns-cache , 118
bro done event, 95
$BROID environment variable, 115
bro init event, 94
bro log file variable, 84, 115
$BROPREFIXESenvironment variable, 17, 19
bro signal event, 95
$BROPATHenvironment variable, 19
BS, 86
buffer overflow tools, 133
buffer size patch forlibpcap, 13

buffers
large for BPF, 13

buggy implementations
causing “weird” events, 154

bugs
$ pattern operator not supported, 27
appalling, 163
causing “weird” events, 154
tcpdump , 94

building Bro, 12
byte len function, 85
bytes in connection, 101, 103

caches
Bro’s private ones, 18

CALLIT portmapper call, 142
can’t open

run-time error, 19
can drop connectivity variable, 113
cannot create directory , 88
capture filter global variable, 17
capture filter variable, 84, 93–94
casting

not provided in Bro, 42
cat function, 85
Central Intelligence Agency

detection, 108
cf utility program, 20
character set

ASCII, 25
check hot function, 110
check info record, 137

forbidden , 137
hot , 137
hot id , 137

check relay 3 variable, 74
check relay 4 variable, 74
check scan function, 114
check spoof function, 110
checkpointing Bro, 18
checksum error

ICMP, 157
IP, 162
TCP, 157
UDP, 157

Christmas packet, 160
CIA detection, 108
CIDR, 29, 88, 91, 105
clean function, 85
cleanup event, 95
client port

triggering a backdoor, 134
client cert , 150

ssl connection info field, 150
clock time, 86, 88
close function, 85

185

code red list1 variable, 63
code red list2 variable, 63
code red log variable, 63
Cold Fusion exploits, 127
command shell, 90

setuid root, 133
compiling Bro, 12
completed connections, 99
compoundstatement, 45
concatenation of strings, 85
conditionalexpression, 48
configuration options

--enable-brov6 , 13
confused login analysis, 131
confused/ authentication annotation, 139, 140
confusion of heuristics, 131
conn analyzer, 95
conn id record, 96, 97
conn size function, 103
conn state function, 103
conn stats event, 148
conn tag info variable, 81
conn weird event, 156
conn weird addl event, 160
connection

additional information, 98, 103
addresses, 96, 101
analysis, 95, 106, 148
attempt, 99
bytes, 96, 101, 103
completion, 99, 100
definitions, 98
detecting sensitive, 110
duration, 98, 101
establishment, 99
events, 99
finished, 99
flags, 101
functions, 103
generic analysis, 95
half finished, 100
hosts, 101
hot, 98, 104, 138
hot analysis, 106
ICMP, 98
ID, 103, 104
initiator, 96
logging, 104
new, 99
non-existing, 91
originator, 96
partial, 99
partial close, 100
pending, 100
ports, 96

recording, 105
rejected, 99
reset, 100
reuse, 159
sensitivity, 98
sequence numbers, 87
service, 98, 101, 103, 105
simultaneous open, 159
size, 96, 101, 103
start time, 98, 101
state, 96, 101, 103
summaries, 101
TCP, 98
terminating with extreme prejudice, 105
testing for existence, 85
UDP, 98

connection events
TCP-specific, 99

connection id is not a known
connection , 86, 91

connection id is not a known login
connection , 87, 90

connection record, 96–98
connection size

undetermined for RST termination, 125
connection states, 102

OTH, 102
REJ, 102
RSTO, 102
RSTOS0, 102
RSTR, 102
RSTRH, 102
S0, 102
S1, 102
S2, 102
S3, 102
SF, 102
SH, 102
SHR, 102

connection summary files, 102
red , 102

connection attempt event, 99
connection established event, 99, 141
connection finished event, 99
connection half finished event, 100
connection id , 150

ssl connection info field, 150
connection originator SYNack (“weird” event),

157
connection partial close event, 100
connection pending event, 100
connection record function, 85
connection rejected event, 99
connection reset event, 100
connectivity

186

dropping, 113, 114
const statement, 45
const variable declaration, 54
constantexpression, 46
constant variables, 45
constants, 148

address, 29
boolean, 22
count, 23
ENDIAN BIG, 148
ENDIAN CONFUSED, 148
ENDIAN LITTLE , 148
ENDIAN UNKNOWN, 148
floating-point, 23
hostname, 29
integer, 23
interval, 27
net, 30
pattern, 25–26
port, 28
record, 31
string, 24–25
temporal, 27
time, 27

contains string function, 86
CONTENTSBOTHdirection, 89
CONTENTSNONEdirection, 89
CONTENTSORIGdirection, 89
CONTENTSRESPdirection, 89
control packets (SYN/FIN/RST), 18, 100
conversion of non-IPv4 address to net ,

91
converting an IPv6 address to net

run-time error, 91
copy

shallow vs. deep, 32, 38
corrupted packets, 157, 162
count , seetypes,count
count maximum, 88
count minimum, 88
&create expire attribute, 36
creating directories, 88
creation time , 118

dns mapping field, 118
crud, 99, 154
current time function, 86

D format, 87
d format, 87
daemon username, 121, 129
daemons

as innocuous user names, 129
data

unanalyzed, 158
data after reset (“weird” event), 157
data before established (“weird” event), 157

day interval unit, 27
debugging

filtering problems, 94
decrementexpressions, 46
deep copy, 32, 38
default

filtering, 93
&default attribute, 35
default values, 35
DEL, 85–86
delete character, 85
delete keyword, 45
delete statement, 45
&delete func attribute, 56
demux module, 117
demux conn function, 117
demux dir variable, 64
demuxed conn variable, 64
denial of service

excessively large fragments, 161
Land attack, 163

detected stones variable, 81
detecting scans, 112
detecting sensitive connections, 110
determine service function, 103
/dev/bpf, 13
did PTR scan event variable, 65
did sigconns variable, 60
did ssh version variable, 81
did stone summary variable, 82
direct login prompts variable, 84, 134
directions, 89

CONTENTSBOTH, 89
CONTENTSNONE, 89
CONTENTSORIG, 89
CONTENTSRESP, 89

directories
creating, 88

directory names
sensitive, 131

discarder check icmp function, 86
discarder check ip function, 86
discarder check tcp function, 86
discarder check udp function, 86
discarder maxlen variable, 84
display pairs variable, 81
distinct answered PTR requests variable, 65
distinct backscatter peers variable, 78
distinct peers variable, 76
distinct ports variable, 76
distinct PTR requests variable, 64
distinct rejected PTR requests variable, 64
diverse network use

causing “weird” events, 154
division

187

numeric, 23
temporal, 28

DMZ
spoof detection, 107

DNS
Bro’s private cache, 118

forcing access to, 18
mappings, 118

DNS lookups
non-blocking, 13

dns module, 118
dns interesting changes variable, 65, 119
dns log variable, 64
dns mapping record, 118, 119
dns mapping altered event, 119
dns mapping lost name event, 119
dns mapping name changed event, 119
dns mapping new name event, 119
dns mapping unverified event, 119
dns mapping valid event, 119
dns session timeout variable, 62
dns sessions variable, 64
done with network global variable, 50
done with network variable, 84
dotted quads, 20
double , seetypes,double
double maximum, 88
double minimum, 88
drop-connectivityshell script, 114
drop address function, 114
dropping connectivity, 113, 114
DUMP portmapper call, 142
duration , 98

connection field, 98
duration of a connection, 98, 101
dynamic defaults, 35

e format, 87
edit function, 86
edit and check line function, 137
edit and check password function, 138
edit and check user function, 137
edited input trouble variable, 72, 131
editing, 86
eggdrop sensitive filename, 124
eggdrop sensitive login input, 131
eject exploit, 131
else keyword, 44
embedded NUL

run-time error, 91
--enable-brov6 configuration option, 13
encrypted login sessions, 142
encryption

leading to “excessive lines”, 141
endian issues, 87, 148
ENDIAN BIG constant, 148

ENDIAN CONFUSEDconstant, 148
ENDIAN LITTLE constant, 148
endian type statistic, 148
ENDIAN UNKNOWNconstant, 148
endpoint record, 96, 97, 101
endpoint id function, 115
enum, seetypes,enum, seetypes,enum
enumerations, 24
environment

accessing, 87
responder, 132
Telnet options, 132

environment variables
$BROID , 115
$BROPREFIXES, 17, 19
$BROPATH, 19
$USER, 132

ephemeral port, 104
triggering a backdoor, 134

ephemeral ports
confused with sensitive services, 109

equalityexpression, 47
escape sequences, 24
established connections, 99
/etc/inetd.conf, 109
/etc/passwd, 127
/etc/shadow, 127
evasion

authentication dialog, 130, 132
excessively small fragments, 161
inconsistent fragment size, 161
inconsistent fragments, 161
inconsistent RPC retransmission, 159
inconsistent TCP retransmission, 163
inserting NULs, 24
length mismatch, 160
using tunneling, 140

event , seetypes,event
event engine, 41
event handler

invocation, 41
event handlers, 41
event handling

weird, 156–163
event keyword, 44
event schedulingexpression, 50
event statement, 44
event type, 41
events

account tried , 114
ack above hole , 95, 163
activating encryption , 142
authentication accepted , 141
authentication rejected , 141
authentication skipped , 141

188

bad option , 141
bad option termination , 141
bro done , 95
bro init , 94
bro signal , 95
conn stats , 148
conn weird , 156
conn weird addl , 160
connection attempt , 99
connection established , 99, 141
connection finished , 99
connection half finished , 100
connection partial close , 100
connection pending , 100
connection rejected , 99
connection reset , 100
dns mapping altered , 119
dns mapping lost name, 119
dns mapping name changed , 119
dns mapping new name, 119
dns mapping unverified , 119
dns mapping valid , 119
exceptional, 154–163
excessive line , 140
finger reply , 120
finger request , 120
finish, 95
flow weird , 161
ftp reply , 126
ftp request , 126
general Bro processing, 94
generic TCP connection, 99
http request , 128
ident error , 129
ident reply , 129
ident request , 129
inconsistent option , 140
initialization, 94
login confused , 139
login confused text , 140
login failure , 138
login input line , 139
login output line , 139
login success , 138
login terminal , 140
net done , 95
net stats update , 95
net weird , 162
new connection , 99
partial connection , 99, 141
pm attempt callit , 147
pm attempt dump, 147
pm attempt getport , 147
pm attempt null , 147
pm attempt set , 147

pm attempt unset , 147
pm bad port , 147
pm request callit , 146
pm request dump, 146
pm request getport , 146
pm request null , 146
pm request set , 146
pm request unset , 146
PTR scan , 65
rexmit inconsistency , 163
scheduling, 50
signature match , 148
ssl certificate , 153
ssl certificate seen , 153
ssl conn alert , 153
ssl conn attempt , 152
ssl conn established , 153
ssl conn reused , 153
ssl conn server reply , 153
ssl conn weak, 154
startup, 94
termination, 95
udp reply , 100
udp request , 100

exceptional events, 154–163
excess RPC(“weird” event), 157
excessive line event, 140
excessive ntp request variable, 74
excessive RPClen (“weird” event), 157
excessive typeahead (login confusion state), 132
excessively long lines, 140
excessively large fragment (“weird” event), 161
excessively small fragment (“weird” event), 161
excluding hosts, 93
executables

running, 90
exit function, 86
expanded line , 137

check info field, 137
expiration

timer, 50, 84
&expire func attribute, 36
explicit typing, 54
exploit scans, 148
exploit tools, 133

smashdu.c , 133
exploits, 131

/bin/eject , 131
buffer overflow, 133
eject , 131
loadmodule , 131
Unix, 131

expressionstatement, 43
expressions, 46–52

anonymous function, 48

189

arithmetic, 47
assignment, 48
conditional, 48
constant, 46
equality, 47
event scheduling, 50
function call, 48
index, 50
logical, 47
membership, 51
negation, 46
parenthesized, 46
pattern matching, 51
positivation, 47
record constructor, 52
record field access, 52
record field test, 52
relational, 48
variable, 46
decrement, 46
increment, 46

extra repeat text (login confusion state), 132
EZsetup username, 121

F, 22
-F flag, 18
-f flag, 17
f format, 87
failure of heuristics, 131
fatal run-time error

non-existing connection, 86
fetchutility, 133
fflush, 86
field attributes, 32
file , seetypes,file
file type, 39
filenames

sensitive, 124, 131
files

appending, 89
opening, 89
testing if open, 85

filtering
default, 93

filters, 93–94
displaying, 94
errors, 94

FIN control packet, 18, 100
FIN advanced last seq (“weird” event), 157
FIN after reset (“weird” event), 158
FIN storm (“weird” event), 158
Finger

analysis, 120
weird events, 158

finger analyzer, 120
finger reply event, 120

finger request event, 120
finish event, 95
firewall

reactive, 113, 114
flag rejected service variable, 68, 109
flag successful inbound service variable, 68,

109
flag successful service variable, 67, 109
flags

-F , 18
-O , 18
-P , 18, 118
-W, 18
-f , 17
-h , 17
-i , 17
-p , 17
-r , 17
-s , 17
-v , 18
-w , 18

flags of connection, 101
flexutility, 25
flow weird event, 161
flush all function, 86
fmt function, 86
for keyword, 44
for statement, 44
forbidden check info record, 137
forbidden id patterns variable, 68, 121
forbidden ids variable, 68, 121
forbidden ids if no password variable, 68, 121
forcing access to Bro’s private DNS cache, 18
format

%, 87
D, 87
d, 87
e, 87
f , 87
g, 87
precision, 86
width, 86

formatting text, 86
.forward , 124
frag module, 121
fragment reassembly, 121
fragment inconsistency (“weird” event), 161
fragment overlap (“weird” event), 161
fragment protocol inconsistency (“weird”

event), 161
fragment size inconsistency (“weird” event),

161
fragment with DF (“weird” event), 162
fragments

excessively large, 161

190

excessively small, 161
inconsistent, 161
inconsistent protocols, 161
inconsistent sizes, 161
overlapping, 161
TCP vs. UDP, 121

frogs
dissecting, 127

FTP
analysis, 122
ephemeral ports confused with sensitive services, 109
log file, 125
session information, 122
weird events, 158

ftp analyzer, 122
ftp session summary file, 125
ftp data expected variable, 66
ftp data expected session variable, 66
ftp excessive filename len variable, 66
ftp excessive filename trunc len variable, 66
ftp guest ids variable, 65, 123
ftp hot cmds variable, 66
ftp hot files variable, 66, 124
ftp hot guest files variable, 66, 124
ftp ignore invalid PORTvariable, 66
ftp ignore privileged PASVsvariable, 66
ftp log variable, 65
ftp not actually hot files variable, 124
ftp port record, 89
ftp reply event, 126
ftp request event, 126
ftp session info record, 122, 123
ftp sessions variable, 65
ftp sig disabled variable, 59
ftp skip hot variable, 65, 123
full id string function, 103
full input trouble variable, 72
full output trouble variable, 72
function , seetypes,function
function callexpression, 48
function invocation, 48
function keyword, 48
function type, 39–40
functions, 39–40

active connection , 85
active file , 85
add interface , 85
add tcpdump filter , 85
anonymous, 48
byte len , 85
cat , 85
check hot , 110
check scan , 114
check spoof , 110
clean , 85

close , 85
conn size , 103
conn state , 103
connection record , 85
contains string , 86
current time , 86
demux conn , 117
determine service , 103
discarder check icmp , 86
discarder check ip , 86
discarder check tcp , 86
discarder check udp , 86
drop address , 114
edit , 86
edit and check line , 137
edit and check password , 138
edit and check user , 137
endpoint id , 115
exit , 86
flush all , 86
fmt , 86
full id string , 103
get login state , 87
get orig seq , 87
get resp seq , 87
getenv , 87
has signature matched , 149
hot login , 137
id string , 104
is forbidden id , 137
is ftp data conn , 125
is hot id , 137
is local addr , 106
is login conn , 137
is tcp port , 87
length , 88
log file name, 88
log hook , 85, 115, 116
log hot conn , 104
mask addr , 88
max count , 88
max double , 88
max interval , 88
min count , 88
min double , 88
min interval , 88
mkdir , 88
network time , 88
open , 39, 89
open for append , 39, 89
open log file , 89
parse ftp pasv , 89
parse ftp port , 89
pm activity , 144
pm attempt , 145

191

pm check getport , 144
pm request , 145
reading live traffic , 89
record connection , 105
redefining, 40
report weird , 156
report weird conn , 156
report weird orig , 156
rpc prog , 144
service name, 105
set buf , 89
set contents file , 89
set login state , 90
set record packets , 90
site-specific, 106
skip further processing , 90
sub bytes , 90
system , 90
terminate connection , 105
to lower , 90
to net , 91
to upper , 91

g format, 87
garbage args (RPC status code), 146
general Bro processing events, 94
general scripting, 88
generic connection analysis, 95
GETHTTP method, 127
get login state function, 87
get orig seq function, 87
get resp seq function, 87
getenv function, 87
GETPORT portmapper call, 142
global scope

of enumerations, 24
global variable declaration, 53
global variables, 53

capture filter , 17
done with network , 50
interfaces , 16, 17
restrict filter , 17

gnutella sig disabled variable, 59
gtld servers variable, 78

-h flag, 17
half-finished connections, 100
handling signals, 95
handshake cipher , 151

ssl connection info field, 151
has signature matched function, 149
have FTP variable, 63
have skip remote sensitive URIs variable, 69
have SMTPvariable, 63
have stats variable, 63
HEADHTTP method, 127

headers
truncated, 162

heartbeat interval variable, 62
help message, 17
heuristics

attacker-induced confusion, 132
confusion, 131
environment, 132
extracting username information, 130, 131
missing login prompt, 132
missing username, 132
multiple login prompts, 132
multiple usernames, 132
type-ahead, 132
VMS, 132

\x hex-digitshexadecimal escape, 24
hf utility program, 20
horiz scan thresholds variable, 76, 149
horizontal exploit scans, 148
host order (vs. network order), 87
hostname , 119

dns mapping field, 119
hostnames, 29

mapping addresses to, 20
hosts

excluding, 93
in a connection, 101

hot , 98
connection field, 98

hot /24 destination networks, 108
hot /24 source networks, 107
hot analyzer, 106
hot check info record, 137
hot connection

analysis, 106
logging, 104

hot connections, 138
hot destination addresses, 107
hot detection, 110
hot source addresses, 107
hot usernames, 121
hot-ids module, 121
hot conns reported variable, 63
hot dst 24nets variable, 67, 108
hot dsts variable, 67, 107
hot id check info record, 137
hot ident exceptions variable, 70, 129
hot ident ids variable, 70, 129
hot ids variable, 68, 122
hot login function, 137
hot login ids variable, 74, 136
hot names variable, 65, 120
hot src 24nets variable, 67, 107
hot srcs variable, 67, 107
hot ssh orig ports variable, 134

192

hot telnet orig ports variable, 73, 134
hot terminal types variable, 73, 133
hr (hours) interval unit, 27
HTTP

analysis, 127
log file, 127
weird events, 157

http analyzer, 127
HTTP methods, 127

GET, 127
HEAD, 127
POST, 127

HTTP packets
contents not being recorded, 18

http session summary file, 127
http abstract max length variable, 69
http log variable, 68
http proxy sig disabled variable, 60
http request event, 128
http sessions variable, 68
http sig disabled variable, 60
HTTP unknown method (“weird” event), 158
HTTP version mismatch (“weird” event), 158
HUP signal, 95

-i flag, 17
ICMP

checksum error, 157
connections, 98
timeout, 98
weird events, 157

icmp flows variable, 70
id , 96, 122, 150

ftp session info field, 122
ssl connection info field, 150

ID of connection, 103, 104
id index , 151

ssl connection info field, 151
id string function, 104
IDENT

analysis, 128
weird events, 160

ident analyzer, 128
ident/ authentication annotation, 129
ident error event, 129
ident reply event, 129
ident request event, 129
ident request addendum (“weird” event), 161
IEUser

useless FTP username, 125
if keyword, 44
if statement, 44
ignore checksums variable, 60
implicit typing, 54
in operator, 26, 51
in-order delivery, 148

!in negation ofin operator, 27
inactivity timeout variable, 61
inappropriate FIN (“weird” event), 158
inbound services

fatal, 109
forbidden, 109

include HTTP abstract variable, 69
incompletely captured fragment (“weird”

event), 162
inconsistent acknowledgment, 163
inconsistent retransmission, 159, 163
inconsistent option event, 140
incrementexpressions, 46
index

of a table, 33
indexexpression, 50
inetd.conf, 109
inferring types, 55
information associated with a connection, 98, 103
ingreslock popular backdoor, 109
initialization event, 94
initialization of variables, 55
input

analysis, 130
editing, 131

input trouble variable, 72, 131
input wait for output variable, 72
installing Bro, 13
int , seetypes,int
INT signal, 95
integers

network vs. host order, 87
interconn conns variable, 70
interconn default pkt size variable, 70
interconn demux disabled variable, 72
interconn ignore standard ports variable, 72
interconn log variable, 70
interconn max interarrival variable, 70
interconn max keystroke pkt size variable, 70
interconn min 7bit ascii ratio variable, 71
interconn min alpha variable, 72
interconn min bytes variable, 71
interconn min duration variable, 71
interconn min gammavariable, 72
interconn min interarrival variable, 70
interconn min normal line ratio variable, 71
interconn min num lines variable, 71
interconn min num pkts variable, 71
interconn min ssh pkts ratio variable, 71
interconn ssh len disabled variable, 71
interconn standard ports variable, 72
interconn stat backoff variable, 71
interconn stat period variable, 71
interfaces global variable, 16, 17
interfaces variable, 84

193

internal networks
spoof detection, 107

internal variables
ATTEMPTINTERVAL, 99
PARTIAL CLOSEINTERVAL, 100
WATCHDOGINTERVAL, 18

internally truncated header (“weird” event),
162

Internet Relay Chat (IRC)
attacker subpopulation, 131

interval , seetypes,interval
interval maximum, 88
interval minimum, 88
interval units

day , 27
hr , 27
min , 27
sec , 27
usec , 27

invocation
function, 48

invoking event handlers, 41
IP

checksum error, 162
fragments, 161
identification field, 148
weird events, 162

IPv4/IPv6 address constants, 29
IPv6 and lack of CIDR prefixes, 30
IPv6 support, 29
IRC, 131
is not a TCP connection , 87
is forbidden id function, 137
is ftp data conn function, 125
is hot id function, 137
is local addr function, 106
is login conn function, 137
is tcp port function, 87
isascii, 90, 91
islower, 91
isupper, 90

kazaa sig disabled variable, 59
keystrokes

analysis, 130
editing, 131

keywords
add , 45
break , 45
delete , 45
else , 44
event , 44
for , 44
function , 48
if , 44
log , 43

next , 44
print , 43
return , 45
schedule , 50

kiddies
script, 107

Land attack, 110, 163
Land attack (“weird” event), 163
large BPF buffers, 13
last stat variable, 63
last stat time variable, 64
(operator, 46, 48
length

of strings, 85
of table or set, 88

length function, 88
length mismatch

UDP, 160
length() requires a table/set argument ,

88
length() takes exactly one argument , 88
lex utility, 25
libpcap buffer size patch, 13
libpcaplibrary, 13
libraries

libpcap, 13
line editing, 86
Linux

compiling Bro under, 13
super exploit, 133

little endian, 87, 148
live traffic, 44, 89
load

shedding, 90
loadmodule exploit, 131
local addresses, 105, 106

spoofing, 106, 107, 110
local statement, 45
local variable declaration, 53
local variables, 45, 53
local 16 nets variable, 79, 105
local 24 nets variable, 79, 105
local code red response pgmvariable, 63
local mail addr variable, 79
local nets variable, 79, 105
log file, 84, 88, 115

altering, 133
connection summary (red), 105
FTP, 125
HTTP, 127
signatures, 148
SSL, 152
weird events, 154

log keyword, 43
log module, 115

194

log statement, 43
log file name function, 88
log hook function, 115, 116
log hook predefined function, 85
log hot conn function, 104
log HTTP data variable, 69
log if not denied , 123

ftp session info field, 123
log if not unavail , 123

ftp session info field, 123
log it , 123

ftp session info field, 123
LOGNOTICEsyslog level, 44
logging

connection, 104
control of, 85

logical expression, 47
logical negation, 22
login analysis

confusion, 131
login analyzer, 130
login confusion states, 132

excessive typeahead , 132
extra repeat text , 132
multiple login prompts , 132
multiple USERs, 132
no login prompt , 132
no username , 132
no username2 , 132
non empty multi login , 132
possible login ploy , 132
repeat without username , 132
responder environment , 132
username with embedded repeat , 132

login prompts
missing, 132
repeated, 132

login session, 130
state, 87, 90

login confused event, 139
login confused text event, 140
login failure event, 138
login failure msgs variable, 73, 134
login input line event, 139
login non failure msgs variable, 73, 135
login output line event, 139
login prompts variable, 73, 134
login sessions variable, 74
LOGIN STATEAUTHENTICATEstate of login connec-

tion, 87
LOGIN STATECONFUSEDstate of login connection, 87
LOGIN STATELOGGEDIN state of login connection, 87
LOGIN STATESKIP state of login connection, 87
login success event, 138
login success msgs variable, 73, 135

login terminal event, 140
login timeouts variable, 73, 136
ls utility, 133
lynx utility, 133

magic terminal types, 133
maintain http sessions variable, 69
management

of state, 36
mask addr function, 88
masking, 88, 91
max count function, 88
max double function, 88
max finger request len variable, 65
max interval function, 88
max request length variable, 120
max timer expires variable, 84
maximum, 88
Maximum Segment Lifetime (MSL), 159
maximums, 88

count , 88
double , 88
interval , 88

membershipexpression, 51
memory management, 36
message

bad format , 87
bad second argument to mask addr() ,

88
bad type for Date format , 87
bad type for floating-point format ,

87
bad type for integer format , 87
cannot create directory , 88
connection id is not a known

connection , 86, 91
connection id is not a known login

connection , 87, 90
conversion of non-IPv4 address to

net , 91
is not a TCP connection , 87
length() requires a table/set

argument , 88
length() takes exactly one argument ,

88
not exactly one edit character , 86
precision specified for

non-floating point format , 86
ridiculous field width or precision ,

86
string with embedded NUL , 91
string without NUL terminator , 91
too few arguments for format , 87
too many arguments for format , 87
wrong number of fmt arguments , 87

mime log variable, 74

195

mime sessions variable, 74
min (minutes) interval unit, 27
min count function, 88
min double function, 88
min interval function, 88
minimum, 88
minimums, 88

count , 88
double , 88
interval , 88

mismatch (RPC status code), 146
missing login prompts, 132
missing username, 132
mkdir failure

run-time error, 88
mkdir function, 88
modifiability of variables, 54
modules

active , 117
demux, 117
dns , 118

event handlers, 119
variables, 119

frag , 121
hot-ids , 121
log , 115
mt , 115
port-name , 115
weird , 154

MSL (Maximum Segment Lifetime), 159
mt module, 115
multi-dimensional table, 34
multiple login prompts, 132
multiple usernames, 132
multiple HTTP request elements (“weird”

event), 158
multiple login prompts (login confusion state),

132
multiple RPCs(“weird” event), 158
multiple USERs(login confusion state), 132
multiplication

numeric, 23
temporal, 28

name
of log file, 88

names
case-sensitive, 31

Napster
tunneled over Telnet or Rlogin, 140

napster sig disabled variable, 59
negation

logical, 22
temporal, 27

negationexpression, 46
neighbor addresses, 106

neighbor 16 nets variable, 79, 106
neighbor 24 nets variable, 106
neighbor nets variable, 79, 106
net , seetypes,net

constants, 30
operators, 30

net type, 29–30
net done event, 95
net stats , seetypes,net stats
net stats record, 96
net stats update event, 95
net weird event, 162
network cleanup event, 95
Network File System (NFS), 143
network interfaces, 16, 17, 84
network order (vs. host order), 87
network prefixes, 29, 91, 105
network statistics, 95
Network Virtual Terminal (NVT), 140
network time function, 88
networks

hot destinations, 108
hot sources, 107

never shut down variable, 113
new connection, 99
new connection event, 99
next keyword, 44
next statement, 44
NFS (Network File System), 143
NFS traffic

high volume fragments, 121
NFS services variable, 75, 143
NFS world servers variable, 75, 143
no such connection

run-time error, 91
no login prompt (login confusion state), 132
no username (login confusion state), 132
no username2 (login confusion state), 132
non-blocking DNS lookups, 13
non-existing connection

fatal run-time error, 86
non analyzed lifetime variable, 61
non ASCII hosts variable, 73, 136
non backdoor prompts variable, 73, 133
non empty multi login (login confusion state), 132
<none> username, 132
not a login connection

run-time error, 87, 90
not a TCP connection

run-time error, 87
not exactly one edit character , 86
!in negation ofin operator, 27
! “not” operator, 22
NT

not supported, 12

196

ntp session timeout variable, 62
NUL, 85
NUL in line (“weird” event), 158
NULL portmapper call, 142
null statement, 45
NULs, 158

allowed in strings, 24, 91
disallowed in certain function calls, 91
terminating string constants, 25
termination, 91
terminator missing

run-time error, 91
num accounts tried variable, 77
num backscatter peers variable, 78
num distinct peers variable, 76
num distinct ports variable, 76
num dns sessions variable, 64
num in order statistic, 148
num OOstatistic, 148
num pkts statistic, 148
num repl statistic, 148
num requests , 123

ftp session info field, 123
num rxmit statistic, 148
num rxmit bytes statistic, 148
num scan triples variable, 77
number of elements

in table or set, 88
numeric types

count , 21
double , 21
int , 21

nuucp username, 121, 129
NVT (Network Virtual Terminal), 140
NVT options

authentication, 141
bad, 141
bad termination, 141
encryption, 142
inconsistent, 140

-O flag, 18
\ octal-digitsoctal escape, 24
off-line analysis, 16, 17, 89, 105
ok (RPC status code), 146
okay to lookup sensitive hosts variable, 64
omit rewrite place holder variable, 63
on-line analysis, 16, 17, 84, 89, 105
open function, 39, 89
open for append function, 39, 89
open log file function, 89
opening a file, 89
operator

&& “and”, 22, 47
(parenthesis, 46, 48
! “not”, 22

|| “or”, 22, 47
) parenthesis, 46, 48

operators
! , 46
!in , 51
(, 50
) , 50
* , 23, 28, 47
+, 23, 28, 47
++, 46
+=, 93
- , 23, 27, 28, 46, 47
-- , 46
/ , 23, 28, 47
: , 48
=, 48
?, 48
[, 50, 52
$, 32
] , 50, 52
address, 29
arithmetic, 23

associativity, 23
operand conversion, 23
precedence, 23

comparison, 24
associativity, 24
operand conversion, 24
precedence, 24

in , 51,seein operator
logical, 22

associativity, 22
precedence, 22

net, 30
pattern, 26
ports, 29
string, 25
temporal, 27

optimizer for policy script interpreter, 18
optimizing your system for Bro, 13
options

Telnet, 130
|| “or” operator, 22, 47
orig , 96
orig h, 96

conn id field, 96
orig p, 96

conn id field, 96
originator RPCreply (“weird” event), 158
OTHconnection state, 102
out-of-order delivery, 148
OutOfBox username, 121
output trouble variable, 72, 133

-P flag, 18, 118
-p flag, 17

197

packet filter
access, 13
permissions, 13

packets
control (SYN/FIN/RST), 18, 100
corrupted, 157, 162
drops, 95, 163
recording, 90
replication, 148
storms, 158
time, 88

() , 46, 48
parenthesizedexpression, 46
parse ftp pasv function, 89
parse ftp port function, 89
partial connections, 99
PARTIAL CLOSEINTERVAL internal variable, 100
partial connection event, 99, 141
partial connection ok variable, 60
partial finger request (“weird” event), 158
partial ftp request (“weird” event), 158
partial ident request (“weird” event), 158
partial portmapper request (“weird” event), 158
partial RPC(“weird” event), 158
partially closed connections, 100
passwd, 127
passwords

guessing, 112
inadvertently exposed, 130
sniffing, 130

PATHUTMPsensitive pattern, 133
pattern , seetypes,pattern
pattern matching, 25

embedded, 26
exact, 26

pattern matchingexpression, 51
patterns, 25–27
pending connections, 100
pending data when closed (“weird” event), 158
performance

analysis tradeoffs, 92
filtering, 93

pm activity function, 144
pm attempt function, 145
pm attempt portmapper attempt, 147
pm attempt callit event, 147
pm attempt dump event, 147
pm attempt getport event, 147
pm attempt null event, 147
pm attempt set event, 147
pm attempt unset event, 147
pm bad port event, 147
pm callit request portmapper call, 147
pm check getport function, 144
pm mapping portmapper mapping record, 146

pm port request portmapper request, 146
pm request function, 145
pm request callit event, 146
pm request dump event, 146
pm request getport event, 146
pm request null event, 146
pm request set event, 146
pm request unset event, 146
policy/ policy directory, 19
policy directories, 19
policy script interpreter

optimizer, 18
policy/local/ policy directory, 19
polymorphic functions

need for, 88, 160
popular backdoors, 109

ingreslock , 109
port , seetypes,port

ephemeral, 104
port scanning, 112
port type, 28–29
port-name module, 115
port names variable, 74, 98, 103, 115
portmapper analyzer, 142
portmapper attempts, 147

pm attempt , 147
portmapper calls, 147

CALLIT, 142
DUMP, 142
GETPORT, 142
NULL, 142
pm callit request , 147
SET, 142
UNSET, 142

portmapper mapping records, 146
pm mapping , 146

portmapper requests, 146
pm port request , 146

ports
constants, 28
operators, 29
TCP, 28
TCP vs. UDP, 87
UDP, 28

positivationexpression, 47
possible future changes

breaking string constants across multiple lines, 24
constants for absolute times, 27
timer type, 50
use ofany type for bypassing strong typing, 42

possible packet drop messages, 163
ack above a hole , 163

possible login ploy (login confusion state), 132
possible port scan thresh variable, 77, 112
possible scan sources variable, 77

198

possible split routing (“weird” event), 159
POSTHTTP method, 127
precision

of formatted strings, 86
precision specified for non-floating

point format , 86
predefined functions, 85–91

active connection , 85
active file , 85
add interface , 85
add tcpdump filter , 85
byte len , 85
cat , 85
clean , 85
close , 85
connection record , 85
contains string , 86
current time , 86
discarder check icmp , 86
discarder check ip , 86
discarder check tcp , 86
discarder check udp , 86
edit , 86
exit , 86
flush all , 86
fmt , 86
get login state , 87
get orig seq , 87
get resp seq , 87
getenv , 87
is tcp port , 87
length , 88
log file name, 88
log hook , 85
mask addr , 88
max count , 88
max double , 88
max interval , 88
min count , 88
min double , 88
min interval , 88
mkdir , 88
network time , 88
open , 89
open for append , 89
open log file , 89
parse ftp pasv , 89
parse ftp port , 89
reading live traffic , 89
set buf , 89
set contents file , 89
set login state , 90
set record packets , 90
skip further processing , 90
sub bytes , 90

system , 90
to lower , 90
to net , 91
to upper , 91

predefined variables, 57–84
accounts tried , 77
active conn , 57
actually rejected PTR anno , 64
addl web, 77
alert action filters , 57
alert file , 57
allow 16 net pairs , 67
allow excessive ntp requests , 74
allow pairs , 67
allow PTR scans , 65
allow service pairs , 67
allow services , 67
allow services to , 67
allow spoof services , 67
always hot ids , 68
always hot login ids , 74
anon log , 57
anonymize ip addr , 62
any RPCokay , 75
backdoor annotate standard ports , 59
backdoor demux disabled , 58
backdoor demux skip tags , 58
backdoor ignore dst addrs , 58
backdoor ignore ports , 58
backdoor ignore src addrs , 58
backdoor log , 58
backdoor min 7bit ascii ratio , 58
backdoor min bytes , 58
backdoor min normal line ratio , 58
backdoor min num lines , 58
backdoor prompts , 73
backdoor standard ports , 58
backdoor stat backoff , 59
backdoor stat period , 58
backscatter ports , 78
bro log file , 84
capture filter , 84
check relay 3, 74
check relay 4, 74
code red list1 , 63
code red list2 , 63
code red log , 63
conn tag info , 81
demux dir , 64
demuxed conn , 64
detected stones , 81
did PTR scan event , 65
did sigconns , 60
did ssh version , 81
did stone summary , 82

199

direct login prompts , 84
discarder maxlen , 84
display pairs , 81
distinct answered PTR requests , 65
distinct backscatter peers , 78
distinct peers , 76
distinct ports , 76
distinct PTR requests , 64
distinct rejected PTR requests , 64
dns interesting changes , 65
dns log , 64
dns session timeout , 62
dns sessions , 64
done with network , 84
edited input trouble , 72
excessive ntp request , 74
flag rejected service , 68
flag successful inbound service , 68
flag successful service , 67
forbidden id patterns , 68
forbidden ids , 68
forbidden ids if no password , 68
ftp data expected , 66
ftp data expected session , 66
ftp excessive filename len , 66
ftp excessive filename trunc len , 66
ftp guest ids , 65
ftp hot cmds, 66
ftp hot files , 66
ftp hot guest files , 66
ftp ignore invalid PORT, 66
ftp ignore privileged PASVs, 66
ftp log , 65
ftp sessions , 65
ftp sig disabled , 59
ftp skip hot , 65
full input trouble , 72
full output trouble , 72
gnutella sig disabled , 59
gtld servers , 78
have FTP, 63
have skip remote sensitive URIs , 69
have SMTP, 63
have stats , 63
heartbeat interval , 62
horiz scan thresholds , 76
hot conns reported , 63
hot dst 24nets , 67
hot dsts , 67
hot ident exceptions , 70
hot ident ids , 70
hot ids , 68
hot login ids , 74
hot names, 65
hot src 24nets , 67

hot srcs , 67
hot telnet orig ports , 73
hot terminal types , 73
http abstract max length , 69
http log , 68
http proxy sig disabled , 60
http sessions , 68
http sig disabled , 60
icmp flows , 70
ignore checksums , 60
inactivity timeout , 61
include HTTP abstract , 69
input trouble , 72
input wait for output , 72
interconn conns , 70
interconn default pkt size , 70
interconn demux disabled , 72
interconn ignore standard ports , 72
interconn log , 70
interconn max interarrival , 70
interconn max keystroke pkt size , 70
interconn min 7bit ascii ratio , 71
interconn min alpha , 72
interconn min bytes , 71
interconn min duration , 71
interconn min gamma, 72
interconn min interarrival , 70
interconn min normal line ratio , 71
interconn min num lines , 71
interconn min num pkts , 71
interconn min ssh pkts ratio , 71
interconn ssh len disabled , 71
interconn standard ports , 72
interconn stat backoff , 71
interconn stat period , 71
interfaces , 84
kazaa sig disabled , 59
last stat , 63
last stat time , 64
local 16 nets , 79
local 24 nets , 79
local code red response pgm, 63
local mail addr , 79
local nets , 79
log HTTP data , 69
login failure msgs, 73
login non failure msgs, 73
login prompts , 73
login sessions , 74
login success msgs, 73
login timeouts , 73
maintain http sessions , 69
max finger request len , 65
max timer expires , 84
mime log , 74

200

mime sessions , 74
napster sig disabled , 59
neighbor 16 nets , 79
neighbor nets , 79
NFS services , 75
NFS world servers , 75
non analyzed lifetime , 61
non ASCII hosts , 73
non backdoor prompts , 73
ntp session timeout , 62
num accounts tried , 77
num backscatter peers , 78
num distinct peers , 76
num distinct ports , 76
num dns sessions , 64
num scan triples , 77
okay to lookup sensitive hosts , 64
omit rewrite place holder , 63
output trouble , 72
partial connection ok , 60
port names, 74
possible port scan thresh , 77
possible scan sources , 77
preserved net , 57
preserved subnet , 57
process HTTP data , 69
process HTTP replies , 69
process smtp relay , 79
public ident systems , 70
public ident user ids , 70
relay log , 80
remote code red response pgm, 63
report accounts tried , 77
report backscatter , 78
report outbound peer scan , 76
report peer scan , 76
report port scan , 76
report rejected PTR factor , 65
report rejected PTR thresh , 65
report remote accounts tried , 77
restrict filter , 84
rewrite finger trace , 65
rewrite ident trace , 70
rewriting http trace , 63
rewriting smtp trace , 63
rlogin conns , 60
rlogin id okay if no password exposed ,

74
rlogin sig 1byte disabled , 59
rlogin sig disabled , 59
root backdoor sig conns , 60
root backdoor sig disabled , 59
root servers , 78
router prompts , 73
RPCdo not complain , 75

RPCdump okay , 75
RPCokay , 75
RPCokay nets , 75
RPCokay services , 75
rpc programs , 75
RPCserver map, 64
rpc timeout , 62
rule actions , 76
rule file , 76
same local net is spoof , 67
scan triples , 77
sensitive lookup hosts , 64
sensitive post URIs , 69
sensitive URIs , 69
skip accounts tried , 77
skip authentication , 73
skip clear ssh reports , 82
skip logins to , 74
skip outbound services , 77
skip remote sensitive URIs , 69
skip scan nets 16 , 78
skip scan nets 24 , 78
skip scan sources , 78
skip services , 77
skip unexpected , 66
skip unexpected net , 66
smtp hot cmds, 80
smtp legal cmds, 80
smtp log , 79
smtp relay table , 80
smtp sensitive cmds, 80
smtp session by content hash , 81
smtp session by message id , 80
smtp session by recipient , 80
smtp sessions , 79
software file , 81
software ident by major , 81
software table , 81
ssh len conns , 60
ssh log , 81
ssh min num pkts , 60
ssh min ssh pkts ratio , 60
ssh sig disabled , 59
step log , 81
stp commonhost thresh , 82
stp delta , 82
stp demux disabled , 82
stp idle min , 82
stp random pair thresh , 82
stp ratio thresh , 82
stp scale , 82
suppress pm log , 75
suppress scan checks , 76
table expire interval , 62
tag to conn map, 81

201

tcp attempt delayv , 61
tcp close delay , 61
tcp connection linger , 61
tcp match undelivered , 61
tcp partial close delay , 61
tcp reassembler ports orig , 62
tcp reassembler ports resp , 62
tcp reset delay , 61
tcp session timer , 61
tcp storm interarrival thresh , 62
tcp storm thresh , 62
tcp SYNack ok , 61
tcp SYNtimeout , 61
telnet sig 3byte conns , 60
telnet sig 3byte disabled , 59
telnet sig conns , 60
telnet sig disabled , 59
terminate successful inbound service ,

68
tftp alert count , 83
udp did summary , 83
udp rep count , 83
udp req count , 83
vert scan thresholds , 76
watchdog interval , 62
weird action , 83
weird action filters , 83
weird do not ignore repeats , 83
weird ignore host , 83
weird log , 83
worm list , 83
worm log , 83
worm type list , 83
worm URIs , 69

prefixes, 17, 19
network, 29, 91, 105

premature connection reuse (“weird” event), 159
preserved net variable, 57
preserved subnet variable, 57
priming Bro’s private DNS cache, 18
print keyword, 43
print statement, 43
print-filter analyzer, 94
printf, 86
process HTTP data variable, 69
process HTTP replies variable, 69
process smtp relay variable, 79
processing

avoiding, 90
prog unavail (RPC status code), 146
programs

cf, 20
hf, 20

PTR scan event, 65
public ident systems variable, 70

public ident user ids variable, 70

-r flag, 17
reactive firewall, 113, 114
&read expire attribute, 36
readingtcpdump files, 17
reading live traffic function, 89
record , seetypes,record

connection , 96
ftp port , 89

record constructorexpression, 52
record field accessexpression, 52
record field testexpression, 52
record connection function, 105
recorded traffic, 89
recording connections, 105
recording packets, 90
records, 30–33, 89, 96–98, 101, 118, 122, 137, 150, 168

assignment, 32–33
check info , 137
conn id , 96, 97
connection , 96–98
dns mapping , 118
endpoint , 96, 97, 101
field attributes, 32
fields, 30

accessing, 32
legal names, 31

ftp port , 89
ftp session info , 122
net stats , 96
signature state , 168
ssl connection info , 150
x509 , 150

red connection summary file, 102
&redef attribute, 56
redefining functions, 40
redefining variables, 56
refinement, 56
regular expressions,seepatterns
REJ connection state, 102
rejected connections, 99
relationalexpression, 48
relationals

address, 29
net, 30
numeric, 24
string, 25
temporal, 28

relative time, 27
relay log variable, 80
remote procedure call (RPC), 142
remote code red response pgmvariable, 63
repeat text, 132
repeat text (VMS), 132

202

repeat without username (login confusion state),
132

repeated SYNreply wo ack (“weird” event), 159
repeated SYNwith ack (“weird” event), 159
replication of packets, 148
report accounts tried variable, 77, 112
report backscatter variable, 78
report outbound peer scan variable, 76, 112
report peer scan variable, 76, 112
report port scan variable, 76
report rejected PTR factor variable, 65
report rejected PTR thresh variable, 65
report remote accounts tried variable, 77, 112
report weird function, 156
report weird conn function, 156
report weird orig function, 156
req addr , 118

dns mapping field, 118
req host , 118

dns mapping field, 118
request , 123

ftp session info field, 123
request t , 123

ftp session info field, 123
reserved multicast addresss, 144

sun-rpc.mcast.net , 144
reset connections, 100
resp , 96
resp h, 96

conn id field, 96
resp p, 96

conn id field, 96
responder environment (login confusion state), 132
responder RPCcall (“weird” event), 159
restrict filter global variable, 17
restrict filter variable, 84, 93–94
restricting traffic, 93
retransmission

inconsistent, 159, 163
return keyword, 45
return statement, 45
rewrite finger trace variable, 65
rewrite ident trace variable, 70
rewriting http trace variable, 63
rewriting smtp trace variable, 63
rewt username, 121, 131
rexmit inconsistency event, 163
.rhosts , 124, 130, 131, 136, 138
ridiculous field width or precision , 86
) operator, 46, 48
RLIMIT NOFILE a, 39
Rlogin

session state, 87, 90
sessions, 130
weird events, 157

rlogin conns variable, 60
rlogin id okay if no password exposed vari-

able, 74, 136
rlogin sig 1byte disabled variable, 59
rlogin sig disabled variable, 59
rlogin text after rejected (“weird” event), 159
root

backdoors, 131
Bro not running as, 13
setuid, 133

root backdoor sig conns variable, 60
root backdoor sig disabled variable, 59
root servers variable, 78
router prompts variable, 73, 135
routing

split, 159
RPC (Remote Procedure Call), 142

reserved multicast address, 144
weird events, 157

RPC status codes, 146
auth error , 146
garbage args , 146
mismatch , 146
ok , 146
prog unavail , 146
system err , 146
timeout , 146
unknown , 146

RPCdo not complain variable, 75
RPCdump okay variable, 75, 144
RPCokay variable, 75, 143
RPCokay nets variable, 75, 143
RPCokay services variable, 75, 143
rpc prog function, 144
rpc programs variable, 75, 143
RPCrexmit inconsistency (“weird” event), 159
RPCserver mapvariable, 64
rpc timeout variable, 62
RST control packet, 18, 100
RST termination

causing undetermined connection size, 125
RST storm (“weird” event), 159
RST with data (“weird” event), 159
RSTOconnection state, 102
RSTOS0connection state, 102
RSTRconnection state, 102
RSTRHconnection state, 102
rule actions variable, 76
rule file variable, 76
run-time error

bad address mask, 88
bad fmt date argument, 87
bad fmt editing character, 86
bad fmt field width, 86
bad fmt floating-point argument, 87

203

bad fmt format specifier, 87
bad fmt integer argument, 87
bad fmt precision, 86
bad length argument (not a table or set), 88
can’t open, 19
converting an IPv6 address to net, 91
embedded NUL, 91
mkdir failure, 88
no such connection, 91
non-existing connection, 86
not a login connection, 87, 90
not a TCP connection, 87
NULs

terminator missing, 91
watchdog timer expired, 18
wrong number of fmt arguments, 87
wrong number of length arguments, 88

running Bro, 12
running outside scripts or executables, 90

-s flag, 17
S0 connection state, 102
S1 connection state, 102
S2 connection state, 102
S3 connection state, 102
same local net is spoof variable, 67, 106
save file

control over what’s recorded, 90
reading, 17
writing, 18

scalars, 33
scan analyzer, 112
scan detection, 112–114
scan triples variable, 77
scanning

address, 112
port, 112
shutting down, 113, 114
stealth, 99, 111, 114, 159

scans
exploit, 148

schedule keyword, 50
scheduling events, 50
scoping of variables, 53
script kiddies, 107
scripting

general, 88
scripts

running, 90
standard, 92–164

search path, 19
searching for strings, 25
sec (seconds) interval unit, 27
semi-colon statement termination, 43
sensitive /24 destination networks, 108
sensitive /24 source networks, 107

sensitive destination addresses, 107
sensitive filenames, 124, 131

eggdrop , 124
sensitive information

inadvertently exposed, 130
sensitive login inputs, 131

eggdrop , 131
sensitive patterns, 133

PATHUTMP, 133
sensitive POST URIs, 127

wwwroot , 127
sensitive services

confused with ephemeral ports, 109
sensitive source addresses, 107
sensitive usernames, 121
sensitive lookup hosts variable, 64
sensitive post URIs variable, 69, 127
sensitive URIs variable, 69, 127
sensitivity associated with a connection, 98
sequence numbers

connection originator, 87
connection responder, 87

server cert , 151
ssl connection info field, 151

service , 98
connection field, 98

service associated with a connection, 98, 101, 103, 105
service name function, 105
services

allowable, 108
allowed to a particular host, 108
allowed to particular host pairs, 108
fatal if inbound, 109
forbidden, 109
forbidden if attempted, 109
forbidden if inbound, 109

set , seetypes,set
SET portmapper call, 142
set size, 88
set type, 38–39
set buf function, 89
set contents file function, 89
set login state function, 90
set record packets function, 90
setrlimit system calls, 39
setuid root, 133
SF connection state, 102
sgiweb username, 121
sh, 90
SHconnection state, 102
shadow, 127
shadowing, 94
shallow copy, 32, 38
shedding load, 90
shell escape, 90

204

shell scripts
drop-connectivity, 114

short-circuit&& “and” operator, 22, 47
short-circuit|| “or” operator, 22, 47
SHRconnection state, 102
shut down all scans variable, 113
shut down scans variable, 113
shut down thresh variable, 113
shutting down scans, 113, 114
sig actions variable, 149
SIG FILE action, 149
SIG IGNOREaction, 149
SIG LOGaction, 149
SIG QUIET action, 149
SIGHUP, 95
SIGINT, 95
signal handling, 95
signature analysis, 148
signature analyzer, 148
signature match event, 148
signature state record, 168
signatures

log file, 148
SIGTERM, 95
simultaneous open, 159
simultaneous open (“weird” event), 159
site addresses, 106
site analyzer, 105
site-specific

functions, 106
information, 105
variables, 105–106

size , 96
endpoint field, 96
of table or set, 88

size of connection, 101, 103
skip accounts tried variable, 77, 112
skip authentication variable, 73, 134
skip clear ssh reports variable, 82
skip further processing function, 90
skip logins to variable, 74, 136
skip outbound services variable, 77, 113
skip remote sensitive URIs variable, 69
skip scan nets 16 variable, 78
skip scan nets 24 variable, 78, 113
skip scan sources variable, 78, 113
skip services variable, 77
skip unexpected variable, 66, 124
skip unexpected net variable, 66, 124
(skipped) authentication annotation, 141
smashdu.c exploit tool, 133
smtp hot cmds variable, 80
smtp legal cmds variable, 80
smtp log variable, 79
smtp relay table variable, 80

smtp sensitive cmds variable, 80
smtp session by content hash variable, 81
smtp session by message id variable, 80
smtp session by recipient variable, 80
smtp sessions variable, 79
smurf attacks, 133
sniffer logs, 133
sniffing, 130
software file variable, 81
software ident by major variable, 81
software table variable, 81
source code

for Bro, 12
split routing, 159
spontaneous FIN (“weird” event), 159
spontaneous RST(“weird” event), 159
spoofing

allowable services, 107
detection, 106, 110

spook detection, 108
sprintf, 86
ssh len conns variable, 60
ssh log variable, 81
ssh min num pkts variable, 60
ssh min ssh pkts ratio variable, 60
ssh sig disabled variable, 59
SSL

analysis, 149
connection information, 150
log file, 152
x509, 150

SSL analyzer, 149
SSL session summary file, 152
ssl analyze certificates variable, 151
ssl certificate event, 153
ssl certificate seen event, 153
ssl compare cipherspecs variable, 151
ssl conn alert event, 153
ssl conn attempt event, 152
ssl conn established event, 153
ssl conn reused event, 153
ssl conn server reply event, 153
ssl conn weak event, 154
ssl connection info record, 150, 151
ssl max cipherspec size variable, 151
ssl store cert path variable, 151
ssl store certificates variable, 151
ssl store key material variable, 152
ssl verify certificates variable, 151
standard scripts, 92–164
start time of a connection, 98, 101
start time , 98

connection field, 98
startup

event, 94

205

transients, 159
state , 96

endpoint field, 96
of a Telnet/Rlogin session, 87, 90

state management, 36
state of connection, 101, 103
state of login connections

LOGIN STATEAUTHENTICATE, 87
LOGIN STATECONFUSED, 87
LOGIN STATELOGGEDIN , 87
LOGIN STATESKIP , 87

statements, 43–46
compound, 45
expression, 43
null, 45
add , 45
break , 45
const , 45
delete , 45
event , 44
for , 44
if , 44
local , 45
log , 43
multi-line, 43
next , 44
print , 43
return , 45
semi-colon termination, 43

static typing, 22
statistical analysis, 148
statistics, 148

endian type , 148
num in order , 148
num OO, 148
num pkts , 148
num repl , 148
num rxmit , 148
num rxmit bytes , 148

stderr, 84, 90, 115
stdout, 43, 90
stealth scans, 99, 111, 114, 159
step log variable, 81
storms, 158
stp commonhost thresh variable, 82
stp delta variable, 82
stp demux disabled variable, 82
stp idle min variable, 82
stp random pair thresh variable, 82
stp ratio thresh variable, 82
stp scale variable, 82
strftime, 87
string , seetypes,string

extraction, 90
formatting, 86

string constants
NUL terminated, 25

string with embedded NUL , 91
string without NUL terminator , 91
<string-with-NUL> error value, 91
strings, 24–25

cleaned up, 85
concatenation, 85
length, 85
termination with NULs, 91

strlen, 85
strstr, 86
sub-tables

lack of, 37
sub bytes function, 90
subnets, 29, 88, 91, 105
substrings, 90
subtraction

numeric, 23
temporal, 28

sun-rpc.mcast.net reserved multicast address, 144
suppress pm log variable, 75, 144
suppress scan checks variable, 76
SYN control packet, 18, 100
SYNafter close (“weird” event), 160
SYNafter partial (“weird” event), 160
SYNafter reset (“weird” event), 160
SYNinside connection (“weird” event), 160
SYNseq jump (“weird” event), 160
SYNwith data (“weird” event), 160
syslog, 44
syslog levels, 44

LOGNOTICE, 44
system callss, 39

setrlimit , 39
system configuration, 13
system err (RPC status code), 146
system function, 90

T, 22
T/TCP, 160
table , seetypes,table
table size, 88
table expire interval variable, 62
tables, 33–38

clearing entries, 38
tag to conn mapvariable, 81
TCP

analysis, 100
checksum error, 157
Christmas packet, 160
connections, 98
corrupted header, 162
events, 99
fragments, 121
transaction, 160

206

weird events, 157
tcp analyzer, 100
TCP control packets (SYN/FIN/RST), 18, 100
TCP vs. UDP ports, 87
TCP Wrappers

reset vs. rejected connections, 99
TCP-specific connection events, 99
tcp attempt delayv variable, 61
TCP christmas (“weird” event), 160
tcp close delay variable, 61
tcp connection linger variable, 61
tcp match undelivered variable, 61
tcp partial close delay variable, 61
tcp reassembler ports orig variable, 62
tcp reassembler ports resp variable, 62
tcp reset delay variable, 61
tcp session timer variable, 61
tcp storm interarrival thresh variable, 62
tcp storm thresh variable, 62
tcp SYNack ok variable, 61
tcp SYNtimeout variable, 61
tcpdump , 13, 15, 17, 18, 93, 94

bugs, 94
filters, 17, 93
merging save files, 18
reading save files, 15, 17
running concurrently with Bro, 13
shadow, 94
turning off optimization, 94
writing save files, 18

Telnet
options, 130

authentication, 141
bad, 141
bad termination, 141
encryption, 142
environment, 132
inconsistent, 140

session state, 87, 90
sessions, 130

telnet sig 3byte conns variable, 60
telnet sig 3byte disabled variable, 59
telnet sig conns variable, 60
telnet sig disabled variable, 59
temporal

addition, 28
constants, 27
division, 28
multiplication, 28
negation, 27
relationals, 28
subtraction, 28
types, 27

TERMsignal, 95
terminal type backdoors, 134

VT666, 134
terminate connection function, 105
terminate successful inbound service vari-

able, 68, 109
terminating connections forcibly, 105
termination event, 95
text

formatting, 86
TFreak, 133
tftp alert count variable, 83
time , seetypes,time , 27–28

clock, 86, 88
packet, 88

timeout (RPC status code), 146
timer expiration, 50, 84
timers, 50
timestamps

mapping to readable form, 20
to lower function, 90
to net function, 91
to upper function, 91
tolower, 90
too few arguments for format , 87
too many arguments for format , 87
toupper, 91
trace file

control over what’s recorded, 90
reading, 17
writing, 18

traffic
live vs. recorded, 44, 89
restricting, 93

transaction TCP, 160
transients

startup, 159
trojaning, 133
truncated headers, 162
truncated header (“weird” event), 162
truncated IP (“weird” event), 162
tunneling, 140
type casting

not provided in Bro, 42
type inference, 55
type-ahead

maximum allowed, 132
types

addr , 21
bool , 21, 22
conversion, 22

automatic, 22
count , 21, 23
double , 21, 23
enum, 21, 24
enumeration, 21
event , 22

207

file , 21
function , 21
int , 21, 23
interval , 21, 27
net , 21
numeric, 21, 23–24

bool not numeric, 23
intermixing, 23

overview, 21
pattern , 21, 25
port , 21
record , 21
set , 21
string , 21, 24
table , 21
temporal, 21
time , 21, 27

types, need fors, 98
union , 98

typing
static, 22

typing of variables, 54

UDP
analysis, 100
checksum error, 157
“connections”, 98
fragments, 121
length mismatch, 160
timeout, 98
weird events, 157

udp analyzer, 100
UDPdatagram length mismatch (“weird” event),

160
udp did summary variable, 83
udp rep count variable, 83
udp reply event, 100
udp req count variable, 83
udp request event, 100
unanalyzed data, 158
undirectional analysis, 159
union type

need for, 88
union types, need for, 98
Unix analysis, 130
Unix support, 12
Unix timestamps, 20
unknown (RPC status code), 146
unpaired RPCresponse (“weird” event), 160
UNSET portmapper call, 142
unsolicited SYNresponse (“weird” event), 160
unusual events, 154–163

prevalence in actual network traffic, 154
usage message, 17
usec (microseconds) interval unit, 27
user , 123

ftp session info field, 123
$USERenvironment variable, 132
user keystrokes

analysis, 130
editing, 131

Username: (VMS login prompt), 132
username with embedded repeat (login confusion

state), 132
usernames, 121, 129, 131

4Dgifts , 121
daemon, 121, 129
extracting, 130, 131
EZsetup , 121
missing, 132
<none> , 132
nuucp , 121, 129
OutOfBox , 121
repeated, 132
rewt , 121, 131
sensitive, 121
sgiweb , 121
uucp , 121, 129

/usr/local/lib/bro/ policy directory, 19
utilities

fetch, 133
flex, 25
lex, 25
ls, 133
lynx, 133

utility programs
cf, 20
hf, 20

uucp username, 121, 129

-v flag, 18
valid , 118

dns mapping field, 118
values

overview, 21
vantage point, 159
variable declarations, 53, 54

const , 54
global , 53
local , 53

variableexpression, 46
variables

accounts tried , 77
active conn , 57, 117
actually rejected PTR anno , 64
addl web, 77, 113
alert action filters , 57
alert file , 57
allow 16 net pairs , 67, 107
allow excessive ntp requests , 74
allow pairs , 67, 107
allow PTR scans , 65

208

allow service pairs , 67
allow services , 67, 108
allow services pairs , 108
allow services to , 67, 108
allow spoof services , 67, 107
always hot ids , 68, 121
always hot login ids , 74, 136
anon log , 57
anonymize ip addr , 62
any RPCokay , 75, 144
attributes, 55
backdoor annotate standard ports , 59
backdoor demux disabled , 58
backdoor demux skip tags , 58
backdoor ignore dst addrs , 58
backdoor ignore ports , 58
backdoor ignore src addrs , 58
backdoor log , 58
backdoor min 7bit ascii ratio , 58
backdoor min bytes , 58
backdoor min normal line ratio , 58
backdoor min num lines , 58
backdoor prompts , 73, 133
backdoor standard ports , 58
backdoor stat backoff , 59
backdoor stat period , 58
backscatter ports , 78
bro log file , 84, 115
can drop connectivity , 113
capture filter , 84, 93–94
check relay 3, 74
check relay 4, 74
code red list1 , 63
code red list2 , 63
code red log , 63
conn tag info , 81
constant, 45
demux dir , 64
demuxed conn , 64
detected stones , 81
did PTR scan event , 65
did sigconns , 60
did ssh version , 81
did stone summary , 82
direct login prompts , 84, 134
discarder maxlen , 84
display pairs , 81
distinct answered PTR requests , 65
distinct backscatter peers , 78
distinct peers , 76
distinct ports , 76
distinct PTR requests , 64
distinct rejected PTR requests , 64
dns interesting changes , 65, 119
dns log , 64

dns session timeout , 62
dns sessions , 64
done with network , 84
edited input trouble , 72, 131
excessive ntp request , 74
flag rejected service , 68, 109
flag successful inbound service , 68, 109
flag successful service , 67, 109
forbidden id patterns , 68, 121
forbidden ids , 68, 121
forbidden ids if no password , 68, 121
ftp data expected , 66
ftp data expected session , 66
ftp excessive filename len , 66
ftp excessive filename trunc len , 66
ftp guest ids , 65, 123
ftp hot cmds, 66
ftp hot files , 66, 124
ftp hot guest files , 66, 124
ftp ignore invalid PORT, 66
ftp ignore privileged PASVs, 66
ftp log , 65
ftp not actually hot files , 124
ftp sessions , 65
ftp sig disabled , 59
ftp skip hot , 65, 123
full input trouble , 72
full output trouble , 72
gnutella sig disabled , 59
gtld servers , 78
have FTP, 63
have skip remote sensitive URIs , 69
have SMTP, 63
have stats , 63
heartbeat interval , 62
horiz scan thresholds , 76, 149
hot conns reported , 63
hot dst 24nets , 67, 108
hot dsts , 67, 107
hot ident exceptions , 70, 129
hot ident ids , 70, 129
hot ids , 68, 122
hot login ids , 74, 136
hot names, 65, 120
hot src 24nets , 67, 107
hot srcs , 67, 107
hot ssh orig ports , 134
hot telnet orig ports , 73, 134
hot terminal types , 73, 133
http abstract max length , 69
http log , 68
http proxy sig disabled , 60
http sessions , 68
http sig disabled , 60
icmp flows , 70

209

ignore checksums , 60
inactivity timeout , 61
include HTTP abstract , 69
initialization, 55
input trouble , 72, 131
input wait for output , 72
interconn conns , 70
interconn default pkt size , 70
interconn demux disabled , 72
interconn ignore standard ports , 72
interconn log , 70
interconn max interarrival , 70
interconn max keystroke pkt size , 70
interconn min 7bit ascii ratio , 71
interconn min alpha , 72
interconn min bytes , 71
interconn min duration , 71
interconn min gamma, 72
interconn min interarrival , 70
interconn min normal line ratio , 71
interconn min num lines , 71
interconn min num pkts , 71
interconn min ssh pkts ratio , 71
interconn ssh len disabled , 71
interconn standard ports , 72
interconn stat backoff , 71
interconn stat period , 71
interfaces , 84
kazaa sig disabled , 59
last stat , 63
last stat time , 64
local, 45
local 16 nets , 79, 105
local 24 nets , 79, 105
local code red response pgm, 63
local mail addr , 79
local nets , 79, 105
log HTTP data , 69
login failure msgs, 73, 134
login non failure msgs, 73, 135
login prompts , 73, 134
login sessions , 74
login success msgs, 73, 135
login timeouts , 73, 136
maintain http sessions , 69
max finger request len , 65
max request length , 120
max timer expires , 84
mime log , 74
mime sessions , 74
modifiability, 54
napster sig disabled , 59
neighbor 16 nets , 79, 106
neighbor 24 nets , 106
neighbor nets , 79, 106

never shut down, 113
NFS services , 75, 143
NFS world servers , 75, 143
non analyzed lifetime , 61
non ASCII hosts , 73, 136
non backdoor prompts , 73, 133
ntp session timeout , 62
num accounts tried , 77
num backscatter peers , 78
num distinct peers , 76
num distinct ports , 76
num dns sessions , 64
num scan triples , 77
okay to lookup sensitive hosts , 64
omit rewrite place holder , 63
output trouble , 72, 133
overview, 53
partial connection ok , 60
port names, 74, 98, 103, 115
possible port scan thresh , 77, 112
possible scan sources , 77
preserved net , 57
preserved subnet , 57
process HTTP data , 69
process HTTP replies , 69
process smtp relay , 79
public ident systems , 70
public ident user ids , 70
redefining, 56
refinement, 56
relay log , 80
remote code red response pgm, 63
report accounts tried , 77, 112
report backscatter , 78
report outbound peer scan , 76, 112
report peer scan , 76, 112
report port scan , 76
report rejected PTR factor , 65
report rejected PTR thresh , 65
report remote accounts tried , 77, 112
restrict filter , 84, 93–94
rewrite finger trace , 65
rewrite ident trace , 70
rewriting http trace , 63
rewriting smtp trace , 63
rlogin conns , 60
rlogin id okay if no password exposed ,

74, 136
rlogin sig 1byte disabled , 59
rlogin sig disabled , 59
root backdoor sig conns , 60
root backdoor sig disabled , 59
root servers , 78
router prompts , 73, 135
RPCdo not complain , 75

210

RPCdump okay , 75, 144
RPCokay , 75, 143
RPCokay nets , 75, 143
RPCokay services , 75, 143
rpc programs , 75, 143
RPCserver map, 64
rpc timeout , 62
rule actions , 76
rule file , 76
same local net is spoof , 67, 106
scan triples , 77
scope, 46
scoping, 53
sensitive lookup hosts , 64
sensitive post URIs , 69, 127
sensitive URIs , 69, 127
shut down all scans , 113
shut down scans , 113
shut down thresh , 113
sig actions , 149
skip accounts tried , 77, 112
skip authentication , 73, 134
skip clear ssh reports , 82
skip logins to , 74, 136
skip outbound services , 77, 113
skip remote sensitive URIs , 69
skip scan nets 16 , 78
skip scan nets 24 , 78, 113
skip scan sources , 78, 113
skip services , 77
skip unexpected , 66, 124
skip unexpected net , 66, 124
smtp hot cmds, 80
smtp legal cmds, 80
smtp log , 79
smtp relay table , 80
smtp sensitive cmds, 80
smtp session by content hash , 81
smtp session by message id , 80
smtp session by recipient , 80
smtp sessions , 79
software file , 81
software ident by major , 81
software table , 81
ssh len conns , 60
ssh log , 81
ssh min num pkts , 60
ssh min ssh pkts ratio , 60
ssh sig disabled , 59
ssl analyze certificates , 151
ssl compare cipherspecs , 151
ssl max cipherspec size , 151
ssl store cert path , 151
ssl store certificates , 151
ssl store key material , 152

ssl verify certificates , 151
step log , 81
stp commonhost thresh , 82
stp delta , 82
stp demux disabled , 82
stp idle min , 82
stp random pair thresh , 82
stp ratio thresh , 82
stp scale , 82
suppress pm log , 75, 144
suppress scan checks , 76
table expire interval , 62
tag to conn map, 81
tcp attempt delayv , 61
tcp close delay , 61
tcp connection linger , 61
tcp match undelivered , 61
tcp partial close delay , 61
tcp reassembler ports orig , 62
tcp reassembler ports resp , 62
tcp reset delay , 61
tcp session timer , 61
tcp storm interarrival thresh , 62
tcp storm thresh , 62
tcp SYNack ok , 61
tcp SYNtimeout , 61
telnet sig 3byte conns , 60
telnet sig 3byte disabled , 59
telnet sig conns , 60
telnet sig disabled , 59
terminate successful inbound service ,

68, 109
tftp alert count , 83
typing, 54
udp did summary , 83
udp rep count , 83
udp req count , 83
vert scan thresholds , 76, 149
watchdog interval , 62
weird action , 83, 154
weird action filters , 83, 155
weird do not ignore repeats , 83, 156
weird ignore host , 83, 155
weird log , 83
worm list , 83
worm log , 83
worm type list , 83
worm URIs , 69
x509 trusted cert path , 151

version , 150
ssl connection info field, 150

version message, 18
vert scan thresholds variable, 76, 149
vertical exploit scans, 148
VMS input editing, 132

211

VMS login prompts, 132
Username: , 132

VT666 terminal type backdoor, 134

-W flag, 18
-w flag, 18
walld, 143, 144, 146, 147
watchdog, 18
watchdog timer expired

run-time error, 18
WATCHDOGINTERVAL internal variable, 18
watchdog interval variable, 62
“weird” event, 156–163

active connection reuse , 156
bad HTTP reply , 157
bad HTTP version , 157
bad ICMP checksum , 157
bad ident reply , 160
bad ident request , 161
bad IP checksum , 162
bad pm port , 163
bad rlogin prolog , 157
bad RPC, 157
bad RPCprogram , 157
bad SYNack , 157
bad TCP checksum , 157
bad TCP header len , 162
bad UDPchecksum , 157
baroque SYN, 157
blank in HTTP request , 157
connection originator SYNack , 157
data after reset , 157
data before established , 157
excess RPC, 157
excessive RPClen , 157
excessively large fragment , 161
excessively small fragment , 161
FIN advanced last seq , 157
FIN after reset , 158
FIN storm , 158
fragment inconsistency , 161
fragment overlap , 161
fragment protocol inconsistency , 161
fragment size inconsistency , 161
fragment with DF, 162
HTTP unknown method , 158
HTTP version mismatch , 158
ident request addendum, 161
inappropriate FIN , 158
incompletely captured fragment , 162
internally truncated header , 162
Land attack , 163
multiple HTTP request elements , 158
multiple RPCs, 158
NUL in line , 158
originator RPCreply , 158

partial finger request , 158
partial ftp request , 158
partial ident request , 158
partial portmapper request , 158
partial RPC, 158
pending data when closed , 158
possible split routing , 159
premature connection reuse , 159
repeated SYNreply wo ack , 159
repeated SYNwith ack , 159
responder RPCcall , 159
rlogin text after rejected , 159
RPCrexmit inconsistency , 159
RST storm , 159
RST with data , 159
simultaneous open , 159
spontaneous FIN , 159
spontaneous RST, 159
SYNafter close , 160
SYNafter partial , 160
SYNafter reset , 160
SYNinside connection , 160
SYNseq jump , 160
SYNwith data , 160
TCP christmas , 160
truncated header , 162
truncated IP , 162
UDPdatagram length mismatch , 160
unpaired RPCresponse , 160
unsolicited SYNresponse , 160

weird event summary file, 154
weird events, 154–163

actions, 154
additional handlers, 163
generated by standard scripts, 163
handled byconn weird , 156
handled byconn weird addl , 160
handled byflow weird , 161
handled bynet weird , 162
prevalence in actual network traffic, 154

weird module, 154
weird action variable, 83, 154
weird action filters variable, 83, 155
weird do not ignore repeats variable, 83, 156
WEIRDFILE action, 155
WEIRDIGNOREaction, 155
weird ignore host variable, 83, 155
weird log variable, 83
WEIRDLOGALWAYSaction, 155
WEIRDLOGONCEaction, 155
WEIRDLOGPERCONNaction, 155
WEIRDLOGPERORIGaction, 155
WEIRDUNSPECIFIEDaction, 155
whitespace

in statements, 43

212

width
of formatted strings, 86

Windows
not supported, 12

worm list variable, 83
worm log variable, 83
worm type list variable, 83
worm URIs variable, 69
write file

control over what’s recorded, 90
&write expire attribute, 36
writing tcpdump files, 18
wrong number of fmt arguments , 87
wrong number of fmt arguments

run-time error, 87
wrong number of length arguments

run-time error, 88
www.anticode.com, 133
wwwroot sensitive POST URI, 127

x509 record, 150
x509 trusted cert path variable, 151

yield
of a table, 33

ypserv, 144

213

