
A	Bro	Primer

Presenter:			Adam	Pumphrey,		Bricata	

© 2017 Bricata, Inc. All Rights Reserved.

Intro

• Working	in	cybersecurity	for	about	17	years	- most	of	which	was	with	
the	civilian	federal	government

• Role	and	responsibilities	have	varied	but	mainly	my	work	has	been	in	
network	defense	and	cybersecurity

• First	exposure	to	Bro	was	in	2009;	engineers	proposed	it	as	a	
replacement	for	a	network	monitoring	tool	set	that	included	argus,	
dsniff and	httpry

• Went	on	to	work	on	a	variety	of	projects,	stand	up	IR	teams,	build	
SOC’s,	design	and	deploy	custom	monitoring	solutions… Bro	has	been	
part	of	the	stack	ever	since

© 2017 Bricata, Inc. All Rights Reserved.

Purpose

• Many	network	and	security	operations	personnel	don’t	come	from	a	
programming	background

• The	potential	value	is	apparent,	Bro’s	logs	can	be	used	for	monitoring,	
threat	detection,	incident	response	and	forensics

• Learning	the	programming	language	can	be	a	daunting	task,	but	is	
necessary	in	order	to	realize	Bro’s	full	potential

• Several	concepts	that	are	central	to	how	Bro	works	are	also	very	
relevant	to	learning	the	language

• Learning	how	to	perform	common,	but	frequently	needed,	tasks	can	be	
a	great	way	to	get	started

© 2017 Bricata, Inc. All Rights Reserved.

Bro	Core

PACKETS Event
Engine

Events

Events

Files

LogsScript
Interpreter

EventsHandlers

© 2017 Bricata, Inc. All Rights Reserved.

Things	to	know...	

• You	should	be	able	to	locate	the	local.bro	policy	file,	typically	here:		
§ $BRO_HOME/share/bro/site/local.bro

• You	should	understand	the	purpose	and	use	of	Bro’s	@load directive
§ Very	similar	to	include and	import commands	found	in	other	

languages
§ Specifies	a	script	(absolute	or	relative	paths)	or	a	module	directory
§ If	a	directory	name	is	specified	Bro	will	attempt	to	load	the	

__load__.bro	file	the	directory	contains

• You	have	defined	the	Site::local_nets	and	Site::local_zones	variables

Events

© 2017 Bricata, Inc. All Rights Reserved.

Event	Interactions

PACKETS Event
Engine

Events

Events

Files

Logs

Inputs

Script
Interpreter

EventsHandlers

Event	Lifecycle

© 2017 Bricata, Inc. All Rights Reserved.

Bro	Process	Events

bro_init Generated once, when Bro initializes. Script operations that only
need to be executed once in the lifetime of a Bro process should
occur in this event handler.

bro_done This Bro process is terminating. Any operations that preserve or
cleanup what is in memory should go here.

© 2017 Bricata, Inc. All Rights Reserved.

Connection	State	Events

new_connection A new connection has been observed. Generated for every new
packet that is not part of a tracked connection. Bro’s flow-based
definition of connection includes TCP, UDP and ICMP flows.

connection_state_remove A connection is being removed from memory. By this point, all
protocol analyzers have attached their data to the connection
record and it is about to be written to the conn log stream.

udp_session_done A UDP transaction has completed. Intended to make UDP
handling more like TCP, supported protocols are: DNS, NTP,
NetBIOS, Syslog, AYIYA, Teredo, and GTPv1

connection_established The SYN-ACK packet from a responder in a new connection has
been seen. This does not indicate the 3-way handshake has
completed. Bro tracks the state either way.

© 2017 Bricata, Inc. All Rights Reserved.

connection_state_remove	and	connection records

© 2017 Bricata, Inc. All Rights Reserved.

File	Analysis	Events

file_sniff Generated once, for each analyzed file. Contains the
inferred metadata, including mime_type, based on analysis
of the first chunk of the file.

file_state_remove File analysis for a file is ending. At this point the fa_file
record contains all of the information gathered by the file
analyzers that ran.

file_new Generated once for each new file Bro identifies and begins
to analyze. Contains information about the connection, but
nothing about the file.

© 2017 Bricata, Inc. All Rights Reserved.

file_state_remove and	fa_file	record

© 2017 Bricata, Inc. All Rights Reserved.

Application	Layer	Protocol	Events

arp

bittorrentdce-rpc

dhcp

dnp3

dns

gtpv1

ftp

gnutella

finger

http icmp

ident

imap

irc

krb

modbus

mysql

ncp

netbios

ntlm ntp

pop3radius

rdprfb

rpc

sip

smbsmtp

smnp

socks

ssh

ssl

syslog

tcp

teredo

udp

xmpp

© 2017 Bricata, Inc. All Rights Reserved.

Find	out	more	about	events…

• List	of	protocol-independent	events	Bro	generates
§ https://www.bro.org/sphinx/scripts/base/bif/event.bif.bro.html

• Review	events	generated	by	the	various	plugins
§ https://www.bro.org/sphinx/scripts/base/bif/plugins

• Documentation	of	Files	framework	and	the	log_files	event
§ https://www.bro.org/sphinx/scripts/base/frameworks/files/main.b

ro.html#events
§ file_sniff	and	other	file	analysis	events	are	generated	by	Bro	core,	

see	the	top	URL	for	more	info

Log	Streams	and	Filters

© 2017 Bricata, Inc. All Rights Reserved.

Bro	Log	Format

• Bro’s	built-in	ASCII	writer	provides	two	primary	output	formats:	
§ Tab-delimited	(Bro’s	proprietary	log	format)	
§ JSON

• The	default	is	tab-delimited,	but	you	can	enable	JSON	with	Bro	Script

Enable JSON Logging
redef LogAscii::use_json = T;

Specify the timestamp format, epoch is default
redef LogAscii::json_timestamps = "JSON::TS_ISO8601";

© 2017 Bricata, Inc. All Rights Reserved.

Bro	Logs	– Native	Format

#separator \x09
#set_separator ,
#empty_field (empty)
#unset_field -
#path conn
#open 2017-08-14-20-02-32
#fields ts uid id.orig_h id.orig_p id.resp_h id.resp_p…
#types time string addr port addr port enum string…
1502741076.550466 C1CxFS3pdJ8kwbmnMl 172.16.253.131 1046…

© 2017 Bricata, Inc. All Rights Reserved.

Bro	Logs	– JSON	Format

{
"ts":"2017-08-14T20:04:36.550466Z",
"uid":"C1CxFS3pdJ8kwbmnMl",
"id.orig_h":"172.16.253.131",
"id.orig_p":1046,
"id.resp_h":"64.90.61.19",
"id.resp_p":80,
"proto":"tcp",
"service":"http",
"duration":0.853405,
"orig_bytes":316,
…

}

© 2017 Bricata, Inc. All Rights Reserved.

Enable	JSON	for	specific	streams	– Copy	the	default	filter

event bro_init()
{

Load the default filter of the Conn log
local filter = Log::get_filter(Conn::LOG,"default");

Specify a new filter name
filter$name = cat(filter$name, "-json");
…

© 2017 Bricata, Inc. All Rights Reserved.

Enable	JSON	for	specific	streams	– Configure	JSON	options

…
Specify a new stream path
filter$path = cat(filter$path, "-json");

Add the config options to the filter
filter$config = table(

["use_json"] = "T",
["json_timestamps"] = "JSON::TS_ISO8601");

Apply the modified default filter
Log::add_filter(Conn::LOG, filter);

}

© 2017 Bricata, Inc. All Rights Reserved.

Disable	a	Log	Stream

Disable the communication log
event bro_init()

{
Log::disable_stream(Communication::LOG);
}

© 2017 Bricata, Inc. All Rights Reserved.

Include	only	certain	fields	in	a	stream

Handle the bro_init event
event bro_init()

{
Retrieve the default filter for the HTTP log stream
local f = Log::get_filter(HTTP::LOG, "default");

Define a new value for the "include" field
f$include = set("ts”

Add the modified default filter back to the HTTP log
Log::add_filter(HTTP::LOG, f);
}

,
"id.orig_h",
"host",
"uri");

© 2017 Bricata, Inc. All Rights Reserved.

Remove	certain	fields	from	a	stream

Handle the bro_init event
event bro_init()

{
Remove the default filter
Log::remove_default_filter(SMTP::LOG);

Add a new filter, use the exclude field
Log::add_filter(SMTP::LOG,

[$name = "no_smtp_recips",
$exclude = set("rcptto")]

);
}

© 2017 Bricata, Inc. All Rights Reserved.

Log	only	select	events

Log only select events
event bro_init()

{
Remove the default filter
Log::remove_default_filter(SMTP::LOG);

Provide an argument to the $pred option
Log::add_filter(SMTP::LOG,

[$name = "incoming_email",
$pred(rec: SMTP::Info) = {

return ! Site::is_local_addr(recidorig_h);
}

]);

}

© 2017 Bricata, Inc. All Rights Reserved.

Route	events	based	on	their	content	– Define	the	function

Function to return desired log file name
function sort_mail(id: Log::ID, path: string,

rec: SMTP::Info): string
{
if (Site::is_local_addr(recidorig_h) &&

(! Site::is_local_addr(recidresp_h)))
return “outgoing_email”;

else if (! Site::is_local_addr(recidorig_h) &&
Site::is_local_addr(recidresp_h))

return “incoming_email”;
}

© 2017 Bricata, Inc. All Rights Reserved.

event bro_init()
{
Remove the default filter
Log::remove_default_filter(SMTP::LOG);

Use sort_mail for the path function
Log::add_filter(SMTP::LOG,

[$name = "email_sorter",
$path_func = sort_mail

]);
}

Route	events	based	on	their	content	– Apply	the	filter	

© 2017 Bricata, Inc. All Rights Reserved.

Add	a	field	to	a	log	stream	– Modify	the	Info	record

Redef the Conn::Info record
export {

Add the new pcr field
redef record Conn::Info += {

pcr: double &log &optional;
};

}

© 2017 Bricata, Inc. All Rights Reserved.

Add	a	field	to	a	log	stream	– Populate	the	field

Handle the appropriate event
event connection_state_remove(c: connection) &priority=3

{
Verify required fields exists
if (! c$conn?$orig_bytes || ! c$conn?$resp_bytes) {

return;
}
Test for specific field value conditions
else if (c$conn$orig_bytes == 0 && c$conn$resp_bytes == 0) {

c$conn$pcr = 0.0;
}
Calculate the new value and store in the pcr field
else {

local n = (c$conn$orig_bytes + 0.0) - (c$conn$resp_bytes + 0.0);
local d = (c$conn$orig_bytes + 0.0) + (c$conn$resp_bytes + 0.0);
local x = (n / d);
c$conn$pcr = x;

}
}

© 2017 Bricata, Inc. All Rights Reserved.

Adding	a	new	log	stream

• Sample	Use	Case	– Separately	log	flow	and	SSL	information	about	
potential	file	downloads	occurring	over	HTTPS

• 3	parts:	

1. Set	up	the	environment
2. Create	the	log	stream
3. Write	events	to	the	stream

Add	a	New	Log	Stream

© 2017 Bricata, Inc. All Rights Reserved.

Set	up	the	script	environment

Load the required scripts
@load ./calculate_pcr
@load base/utils/site

Define a module namespace
module https_transfer;

© 2017 Bricata, Inc. All Rights Reserved.

Define	export	block	for	module	declarations

Export the required objects
export {

Redef the Log::ID enum to include our module's stream
redef enum Log::ID += {

LOG
};

Define an Info record for the log
type Info: record {

ts: time &log;
uid: string &log;
orig_h: addr &log;
resp_h: addr &log;
pcr: double &log;
bytes_received: count &log;
server_name: string &log;
subject: string &log;
issuer: string &log;

};

global log_https_transfer: event(rec: https_transfer::Info);
}

© 2017 Bricata, Inc. All Rights Reserved.

Create	the	log	stream

Create the stream inside the bro_init event handler
event bro_init()

{
Log::create_stream(https_transfer::LOG,

[
$columns=https_transfer::Info,
$ev=log_https_transfer,
$path="https_transfers”

]);
}

© 2017 Bricata, Inc. All Rights Reserved.

Test	traffic	conditions	with	the	IF	statement

Handle connection_state_remove event to work with the pcr value
event connection_state_remove(c: connection) &priority=0

{
Check for SSL between an internal client and external server
if (c?$ssl && (Site::is_local_addr(cidorig_h) && !

Site::is_local_addr(cidresp_h)))
{
Check if the pcr value signifies likely file download
if (c$conn$pcr <= -0.99)

{
…

© 2017 Bricata, Inc. All Rights Reserved.

Write	the	Info	record	to	the	log	stream

…
Create and populate the Info record
local rec = https_transfer::Info(
$ts = c$start_time,
$uid = c$uid,
$orig_h = c$id$orig_h,
$resp_h = c$id$resp_h,
$pcr = c$conn$pcr,
$bytes_received = c$conn$resp_bytes,
$server_name = c$ssl?$server_name ?

csslserver_name : "",
$subject = c$ssl?$subject ? c$ssl$subject : "",
$issuer = c$ssl?$issuer ? c$ssl$issuer : ""

);

Write the Info record to the log stream
Log::write(https_transfer::LOG, rec);
}

}
}

© 2017 Bricata, Inc. All Rights Reserved.

Additional	Resources

• Script	Reference,	supplement	to	the	documentation	pulled	from	source	
code	comments:		
§ https://www.bro.org/sphinx/script-reference/index.html

o Operators
o Types
o Attributes
o Declarations	and	Statements
o Directives

• FloCon 2014	PCR	Presentation	by	Cater	Bullard	and	John	Gerth
§ https://qosient.com/argus/presentations/Argus.FloCon.2014.PCR.P

resentation.pdf

