

Using awk to analyze Bro logs

Mark Krenz
BroCon 2017

September 12th, 2017

Center for Trustworthy Cyberinfrastructure
The NSF Cybersecurity Center of Excellence

CTSC’s mission is to provide the NSF community a coherent
understanding of cybersecurity’s role in producing trustworthy
science and the information and know-how required to achieve
and maintain effective cybersecurity programs.

Speaker Bio - Mark Krenz

● Lead Security Analyst at Indiana University CACR (5 years)
● Part of the CTSC group
● System Administrator for 20 years
● Have worked in various sectors (private, government,

academic)
● Creator of popular Twitter feed @climagic that :

https://twitter.com/climagic

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Agenda

● Give a brief introduction to:
● The command line (This won't hurt, I promise)

● Regular expressions
● The awk command

● Provide you with real solutions to finding data in your Bro logs
● Network Statistics
● Security Incident Detection
● Complex Analysis
● $urprise!

THESE SLIDES WILL BE MADE AVAILABLE AFTER THE TALK

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Color Coding Used For Commands In Slides

● commands
● options for commands
● filenames
● awk script
● output from commands
● | > >> (output redirection characters)
● comment text or prompt, don't type this

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Common Commands for Processing Bro Logs

● cat, less, head and tail
● grep
● bro-cut
● sort
● uniq
● wc
● sed
● awk
● many others...

Image source: http://www.commitstrip.com/en/2016/12/22/terminal-forever/

Command syntax (awk)

Pattern:

awk [options] <'program'> [file1] [file2] [...]

Starter program keywords:
● {print $0} (action statements)
● $1, $2, ..., $NF
● $2=="foo", $2!="foo"
● $3~/^[Bb]etty$/
● true || false, true && true
● (do this first) before doing this
● variable=value

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

How a command pipeline works

● Read in data, send output to next command
● Example (show list of id.orig_h IPs ordered by count)

$ zcat conn.log.gz | awk -F\\t '{print $3}' | sort | uniq -c | sort -rn
 155489 172.16.0.10

 2836 172.16.0.5
 1456 172.16.0.13
 813 172.16.0.2
 64 172.16.0.7

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Brief regular expression primer
● A regex can be used to match patterns of text data.
● Use " " or ' ' to protect expression from shell interpretation.
● . - matches any single character
● \. - Matches a literal . (use a \ before any special character)
● .* - matches any character zero or more times
● .+ - matches any character 1 or more times
● ^ - Matches the beginning of the line.
● $ - Matches the end of the line
● [a-z]- matches any letter between a and z in 1 position
● [a-zA-Z0-9] - Matches any alphanumeric in ASCII
● [^0-9] - Matches any character that is not 0 through 9.
● [0-9]{1,3}- Matches any character 0 - 9 between 1 and 3 times

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Regex Precision Is Important

Use ^2\.4\.150\.1$ to search for the IP 2.4.150.1

Why shouldn't I just run this?

grep "2.4.150.1" access_log

Because it will also match :
22.4.150.15
204.150.100.10

and these values:
2E4150A1
/script.php?id=12948150218

Detect Hosts Searching For Exploitable Code

Which IP had the most HTTP 404 Not Found errors?

● What is a 404 not found error?
○ HTTP status return code to the client

● What logs track this information?
○ Bro's http.log

● What field is it in the bro log?
○ status_code

● How can we match a number in a log? *
○ awk, grep, sed, search

● How can we generate a top list? *
○ Collect like groups (sort)
○ Count the number of items in each group (uniq -c)
○ Order the counts. (sort -n)

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Recon Detection Command (404s)

$ cat http.log |
bro-cut id.orig_h status_code |
awk -F\\t '$2=="404"' |
sort | uniq -c | sort -n |
tail -n 1

165 64.39.106.131 404

$ dig +short -x 64.39.106.131

sn031.s01.sea01.qualys.com

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

http://sn031.s01.sea01.qualys.com

Detect If Web App Tried To Read Filesystem

Do any successful queries to Wordpress code contain filesystem paths in the query
string?

● Where do wordpress requests get logged?
○ Bro's http.log

● What should I search for?
○ Filesystem path indicators like '/', '..', '/etc' or
○ Specific filenames like my.cnf, passwd, .htaccess

● How can I figure out if the exploit attempt worked?
○ HTTP return status (if 404, then probably not; 200 only means potentially)
○ Does the file referenced exist?

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Compromise 2: http.log
Jun 17 23:00:10 CcMeer3amA5aZ9nrx 107.160.46.226 4908 141.142.234.27 2375 1 GET 141.142.234.27 �
 /version - - �
 0 145 200 OK - - - (empty) - - - - - Fr5LXVyNQ3lRrs2tg text/json

Jun 18 02:10:21 CFVSv31q8HACwAJSOc 107.160.46.226 4534 141.142.234.27 2375 1 GET 141.142.234.27 �
 /v1.23/containers/json?all=0&limit=-1&trunc_cmd=0&size=0 - python-requests/2.10.0 �
 0 36000 200 OK - - - (empty) - - - - - Fay4vxEzVjage6cy1 text/json

Jun 18 02:10:21 CQMaBW2KP1XCGMVNlb 107.160.46.226 4533 141.142.234.27 2375 1 GET 141.142.234.27 �
 /version - Python-urllib/2.7 �
 0 145 200 OK - - - (empty) - - - - - FUpmSO27PvsmkOk5n4 text/json

Jun 18 02:34:35 CqA2Xg3qh9Lrpi6IEj 107.160.46.226 2516 141.142.234.27 2375 1 GET 141.142.234.27 �
 /version - Python-urllib/2.7 �
 0 145 200 OK - - - (empty) - - - - - FHqbUe1aylw9O5YFP8 text/json

Jun 18 02:34:35 CTAMVF3Rv4jhcgBRAc 107.160.46.226 2517 141.142.234.27 2375 1 POST 141.142.234.27 �
 /v1.23/containers/6df61c916b1aee2d72046ce92bbbc16dd01c9dfb847faa12286c9e3bcd5d745c/exec - python-requests/2.10.0 �
 216 74 201 Created - - - (empty) - - - Fds3MstwaFnM6XAw8 text/json FpxUE944g6vBSuAfkh text/json

Jun 18 02:34:35 CTAMVF3Rv4jhcgBRAc 107.160.46.226 2517 141.142.234.27 2375 2 POST 141.142.234.27 �
 /v1.23/exec/182881b4e9e685453e610021892788085ab814518bde903c957cfdc272066d01/start - python-requests/2.10.0 �
 31 119 200 OK - - - (empty) - - - FWK4NW22KWWiB462p1 text/json FzCk3uWDE3YjVKkb -

Jun 18 02:35:02 CaBfuW2tjnMVk7FnIl 107.160.46.226 3747 141.142.234.27 2375 1 GET 141.142.234.27 �
 /version - Python-urllib/2.7 �
 0 145 200 OK - - - (empty) - - - - - FISSYk4kMVOJ8A9wv1 text/json

Jun 18 02:35:02 CSI7QrHUkubbD8nU1 107.160.46.226 3750 141.142.234.27 2375 1 POST 141.142.234.27 �
 /v1.23/containers/6df61c916b1aee2d72046ce92bbbc16dd01c9dfb847faa12286c9e3bcd5d745c/exec - python-requests/2.10.0 �
 246 74 201 Created - - - (empty) - - - FLzVNf1jnhEtYjki2j text/json FfkBeY1jz0SEpgK0K text/json

Recon detection command (web app)

$ awk -F\\t '$10~/\.\.\//' http.log
1486703681.865315 C57Abb4C4F651y171f 172.16.17.106
42470 36.158.63.186 80 1 GET
www.acmewidgets.com
/wp-admin/admin-ajax.php?action=revslider_show_image&img=..
/../.my.cnf - Mozilla/5.0 0 3 200 OK -
- - (empty) - - - --FiU9vrD2d9PPvMQJc
-

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Detect If A New Exploit Hit Us In The Past?

Given that the recent Intel AMT vulnerability has been hidden in chips since 2010, can
we find any indication of previous attacks against our network?

● What are we looking for?
○ meta data about traffic to tcp ports 16992 and 16993

● Where can we find this?
○ Bro's conn.log

● How can we be sure the connections were successful?
○ Check that the conn_status column in conn.log is not "S0".

● Make a list of potential attackers first, save it to a file.
● Then investigate the overall activity of the potentials.

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Recon detection command (Intel AMT)

$ zcat 201[0-7]-*/conn.*.log.gz |
 cat - current/conn.log |
 awk -F\\t '($6==16992 || $6==16993) && $12!="S0"
 {print $3}' > potential-attackers.txt
$ zgrep -F -f potential-attackers.txt
201[0-7]-*/conn.*.log.gz current/conn.log

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Image source: https://upload.wikimedia.org/wikipedia/en/3/3a/Hacker_inside.jpg

Logins Vs. Non-work Time

Can we analyze a log to show entries of login activity outside of normal working
hours?

● What service do we want to check against?
○ SSH

● What logs provide this information?
○ Bro's ssh.log

● How to compare time of day?
○ Use bro-cut to convert ts column to parsable local time.
○ Use awk's substr() function to get the hour of the day from the timestamp.

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Break It Down: Getting A Sub-string

substr(<string>, <starting index*>, <length of substring>)
(*starting index is from 1, not 0.)

substr("this is easy", 9, 4);
easy

($1 = 2017-01-24T04:03:58-0400)
substr($1,12,2)
04

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Break It Down: Making Comparisons

$0!~/^#/ (Don't print lines starting with comment characters)

$4=="T" && $5=="INBOUND" (Successful inbound logins)

if (true) { do something } else { do something else }

if (hour < 9 || hour >= 17) { print } (♫ Not Workin' 9 to 5 ♫)

true && true || false { print }

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Logins Vs. Non-work Time

(Check for inbound successful logs not between 9am and 5pm)
$ cat ssh.log |
 bro-cut -C -d ts id.orig_h id.resp_h auth_success direction |
 awk -F\\t '$0!~/^#/ && $4=="T" && $5 == "INBOUND"
 { hour=int(substr($1,12,2)); if (hour < 9 || hour >= 17)
 {print}}' | less -S

2017-04-01T06:45:18-0400 154.19.91.90 10.0.4.26 T INBOUND
2017-04-01T06:47:13-0400 154.19.91.90 10.0.1.5 T INBOUND
2017-04-01T19:05:44-0400 154.19.91.90 10.0.1.5 T INBOUND

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Logins Vs. Non-work Time

● Alternate way using modulus of epoch time.

● % is modulus operator, gives you the remainder after
division.

● Unix epoch time modulo 86400 will give you the same time of
day no matter what the day

$ cat ssh.log |
 awk -F\\t '$8=="T" && $9 == "INBOUND" &&
 ($1 % 86400 < 43200 || $1 % 86400 > 75600) {print}' |
 less -S

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Break It Down: Awk Array Primer

● An array stores a set of values. ['a', 10, "kiwi", "192.168.0.5",]
● You can perform operations on the array and it's values.
● a[0] = "Tabitha Gallagher" (store a value by numeric index)
● u['tgallagher'] = "Tabitha Gallagher" (store a value by text key)
● conns['10.0.0.2 66.8.54.3'] = 203 (Complex key made of IPs)
● u['ishort']['name'] = "Ira Short" (multi-dimensional array)
● length(u) (Get the number of keys in the 'users' array)

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Detecting Brute Force Success

Can we track failure or success for a service?

● Bro's ssh.log

How to keep track of failures?

● If failure, increment a value in an array for that IP pair
● If "success" and fail count has passed a threshold?

Then print.
● Delete successful connection pairs to reset count.

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Detect Brute Force Success (After 20+ tries)

$ zcat 2017-*/ssh*.gz | cat - current/ssh.log |
 bro-cut -d -C ts uid id.orig_h id.resp_h auth_success |
 awk -F\\t '{ pairkey=$3 ":" $4;
if ($5 != "T") { fails[pairkey]++;
} else {

if (fails[pairkey] > 20) {
print $0 " after " fails[pairkey] " tries";

}
delete fails[pairkey]; }

}}'
2017-08-02T05:15:04-0500 CyAM04646e0f7ad4 42.81.18.7 107.16.2.47 T after 5082 tries

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Attack Reinforcement Detection

How can we detect when someone installs a backdoor?

● What type of service is being backdoored?
○ SSH

● How could we tell if it's been backdoored?
○ SSH server version number change
○ Server side binary file size or checksum

● What logs can we use for software version change?
○ Bro's software.log

● What tool can we use to detect a change?
○ awk: Store the last version seen and compare with current line's version

○ if (lastversion != $4) { print; lastversion=$4 }

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Attack Reinforcement Detection

From software.log:

Jul 27 19:32:19 141.142.227.45 22 SSH::SERVER OpenSSH_6.6.1p1
Jul 27 20:29:39 141.142.227.45 22 SSH::SERVER OpenSSH_6.6.1p1
Jul 27 22:27:53 141.142.227.45 22 SSH::SERVER OpenSSH_6.6.1p1
Jul 27 23:30:34 141.142.227.45 22 SSH::SERVER OpenSSH_6.5.1p1

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Attack Reinforcement Detection Command

$ cat software.log |
bro-cut -C -d ts host host_p unparsed_version |
awk -F\\t '$2=="141.142.227.45" && $3=="22"
{ if (lastversion != $4) { print; lastversion=$4 } }'

Jul 27 22:27:53 141.142.227.45 22 OpenSSH_6.6.1p1
Jul 27 23:30:34 141.142.227.45 22 OpenSSH_6.5.1p1

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

MySQL Log Analysis Command

Checking for a large number of returned rows
$ cat mysql.log |
bro-cut -C -d ts id.orig_h id.resp_h success rows |
awk -F\\t '$3=="T" && $4 > 1000 { print }'

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

MySQL Log Analysis Command

SQL queries coming from odd networks or hosts
$ cat mysql.log |
bro-cut -C -d ts id.orig_h id.resp_h success |
awk -F\\t '$2 !~ /^172\.16\.50\./ && $3=="T" { print }'

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

Image source: https://xkcd.com/327/

Large Exfiltration Of Data

Large outbound transfers from sensitive networks (172.17.50.0/24)
$ cat conn.log |
bro-cut -C -d ts id.orig_h id.resp_h resp_ip_bytes |
awk -F\\t '$3~/^172\.17\.50\./ && $4 > 100000000
{ print }'

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs
Image source: http://en.rocketnews24.com/

Large Exfiltration Of Data

Large outbound transfers from sensitive networks (172.17.50.0/24)
$ cat conn.log |
bro-cut -C -d ts id.orig_h id.resp_h resp_ip_bytes |
awk -F\\t '$3~/^172\.17\.50\./ && $4 > 100000000
{ print }'

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

2017-05-26T13:08:32-0400 172.17.50.7 172.17.49.42 3020603598
2017-05-26T15:11:04-0400 172.17.50.7 16.58.192.193 5031339532
2017-05-26T18:09:24-0400 172.17.50.2 57.49.32.164 171755661
2017-05-26T22:15:40-0400 172.17.50.8 172.16.9.5 1420997210

Detect Protocol Mismatch

Show instances of ssh running on port 80 or 443
$ cat conn.log |
bro-cut -C -d ts id.orig_h id.resp_h id.resp_p service |
awk -F\\t '($4 == 80 || $4 == 443) && $5 == "ssh"'

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

2017-05-02T04:03:34-0400 172.17.40.104 42.71.10.49 443 ssh

Image source: http://s2.quickmeme.com/

Accessing Bro log columns by name (bawk)

Wouldn't it be great if you could just run awk commands like these?
$ bawk '$_b["id.resp_h"] ~ /10\.0\.1\./' http.log

$ bawk 'geoip($_b["id.orig_h"]) == "XZ"' ssh.log

$ cat http.log conn.log | bawk '{
if (_log_path == "http") {
 if ($_b["uri"] ~ /malwarestring/) { uids[$_b["uid"]=1 }
} else if (_log_path == "conn" && uids[$_b["uid"]]) { print }'

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs
Git it here: https://github.com/deltaray/bawk

Accessing Bro log columns by name (bawk)

From /opt/bro/lib/bawk/getlogheaders.awk :
/^#/ {

if ($0~/^#fields/) {
 for (i=2; i<=NF; i++) {
 _b[$i]=i-1
 };

}
 print; next;
}

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs
Git it here: https://github.com/deltaray/bawk

Accessing Bro Log Columns By Name (bawk)

Finding potential video call users
$ zcat 2017-08-*/conn.00\:00\:00-00\:00\:00.log.gz |
bawk '
$_b["id.resp_p"] >= 3478 && $_b["id.resp_p"] <= 3481
 { caller[$_b["id.orig_h"]] = $_b["ts"] }
$_b["resp_ip_bytes"] > 2000000
 && ($_b["ts"] - caller[$_b["id.orig_h"]] < 300
 && $_b["proto"]=="udp"
 && $_b["id.resp_p"] > 1023)
 { print }'

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs
Git it here: https://github.com/deltaray/bawk

Using scripts for complex commands

● Recommend using shell scripts to save complex and often reused analysis
commands.

● Make the scripts adaptable through use of arguments.
● Run them regularly from cron

BroCon 2017 - September 12th, 2017

Using awk to analyze Bro logs

CTSC webinar series: trustedci.org/webinars
Mailing list: trustedci.org/ctsc-email-lists

We thank the National Science Foundation (grant 1547272) for supporting our work.

The views and conclusions contained herein are those of the author and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the NSF.

Thank You

We thank the National Science Foundation (grant 1547272) for supporting our work.

The views and conclusions contained herein are those of the author and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of the NSF.

CTSC:
trustedci.org
@TrustedCI

Bro:
bro.org
@Bro_IDS

NCSA:
ncsa.illinois.edu
@NCSAatIllinois

CACR:
cacr.iu.edu
@iucacr

SWAMP:
continuousassurance.org
@SWAMPTEAM

CLI Magic:
climagic.org
@climagic

Questions? Comments? Contact the presenter at mkrenz@iu.edu

