
Creating the Bro RFB
(VNC) parser
Martin van Hensbergen, Fox-IT

Agenda
• Introduction

• Context: How we use Bro

• The dangers of VNC

• VNC protocol

• Dev

• Deploy

• Future work

Introduction
• Martin van Hensbergen - Fox-IT

• Studied Mathematics at University of Delft

• Worked at Fox-IT 2001-2011 + 2016-?

• Mostly as developer but also in few other areas

• 2007-2011, worked on FoxReplay

• Software for full-content reconstruction of network data

• Lawful interception & forensics purposes

• Required network protocol knowledge

Bro at Fox-IT

Bro at Fox-IT

• We use Bro in three major services:

• Passive Audits - 🤔

• Compromise Assessments - 😨

• Incident Response - 😵

Bro at Fox-IT

• We use Bro in three major services:

• Passive Audits - network 🤔

• Compromise Assessments - 😨

• Incident Response - 😵

Bro at Fox-IT

• We use Bro in three major services:

• Passive Audits - network 🤔

• Compromise Assessments - network+hosts 😨

• Incident Response - 😵

Bro at Fox-IT

• We use Bro in three major services:

• Passive Audits - network 🤔

• Compromise Assessments - network+hosts 😨

• Incident Response - network+hosts 😵

Bro at Fox-IT - Passive Audit

• We take a ‘photograph’ of the network by
passively monitoring 4 weeks of network traffic

• Combination of:

• Bro

• Suricata

• Custom tooling

Bro at Fox-IT - Passive Audit

• Bro gives us a very detailed run-down on:

• Protocols used in a network

• Flow data

• Suricata gives us alerting on known-bad

Bro at Fox-IT - Passive Audit

Suricata

Bro

Wireshark

Use strengths of
multiple products

Bro at Fox-IT - Passive Audit

• Mix: Automated and manual analysis

• Deliver report on security of the network

Bro at Fox-IT - Passive Audit
• Some things we look for:

• Weak protocols (security wise) / SSL configs / Plaintext
passwords

• ‘Weird’ traffic / Context surrounding alerts

• Network segmentation

• Services exposed to e.g. outside world

• Remote administration tools

• RDP ... why not RFB/VNC?

VNC basics

• Versatile protocol to view and control GUI’s over
a network connection.

• Original spec (v3.3) by Olivetti Research Lab in
1998, later maintained by RealVNC: v3.7 in 2003
and v3.8 in 2007.

• Protocol published under RFC6143 by RealVNC
in 2011

VNC basics

• Server runs RFB server (e.g. RealVNC server);
listens on (default) TCP port 5900

• RFB client connects over network

• Client can control server over network

The dangers of VNC

The dangers of VNC

• My colleague Yonathan Klijnsma did some
research on publicly reachable VNC servers

• It's 2016 VNC IS EVERYWHERE!

The dangers of VNC

The dangers of VNC

Dangers of VNC

• All good and fun until…

The dangers of VNC - IoT

Dangers of VNC

• All good and fun untill:

Dangers of VNC

• VNC connections open to:

• Medical devices

• SCADA systems

• Factories

• Homes

Dangers of VNC

• VNC:

• no- or weak authentications

• unencrypted

Bro Wishlist
• What would we want to see from a security perspective:

• are there RFB servers in the network?

• from where and when are they accessed, for how long?

• which software is used?

• what kind of authentication is used, was it successful?

• other useful information?

• Bonus exercise: can we get a screenshot? 😇

VNC protocol

VNC protocol
ProtocolVersion Handshake

Security Handshake

SecurityResult Handshake

Client/Server Init messages

Frames!

VNC protocol
ProtocolVersion Handshake

Security Handshake

SecurityResult Handshake

Client/Server Init messages

Frames!

VNC protocol - Identification

ServerClient

Client Version

Server Version

VNC protocol - Identification

ServerClient

Client Version

Server Version

12 byte string “RFB xxx.yyy\n”

RFB 003.003 - RFB 003.007 - RFB 003.008

RFB 002.000
RFB 003.002
RFB 003.003
RFB 003.004
RFB 003.005
RFB 003.006
RFB 003.007
RFB 003.008
RFB 003.010
RFB 003.016
RFB 003.033
RFB 003.039
RFB 003.043
RFB 003.130
RFB 003.236
RFB 003.889
RFB 004.000
RFB 004.001
RFB 005.000
RFB 009.123
RFB 009.221
RFB 009.963
RFB 103.006

Apple Remote Desktop
RealVNC Personal
RealVNC Enterprise

Source: Y. Klijnsma

Identified RFB
headers in the wild.

VNC protocol - Identification

• Certain version numbers can be attributed to
certain software

VNC protocol
ProtocolVersion Handshake

Security Handshake

SecurityResult Handshake

Client/Server Init messages

Frames!

VNC protocol security

• Server sends a list of supported ‘security types’

• These determine form of authentication
(examples):

• 1 = No authentication

• 2 = VNC authentication

• 30 = Apple Remote Desktop authentication

VNC protocol - VNC
authentication

ServerClient

16 byte challenge

16 byte response

DES(challenge) with password derived key

VNC protocol - VNC
authentication

• Custom authentication types possible

• Found VNC server implementation that does
send username/password in cleartext over wire

•😳

VNC protocol
ProtocolVersion Handshake

Security Handshake

SecurityResult Handshake

Client/Server Init messages

Frames!

VNC protocol - Security
result

• Server always sends an explicit
acknowledgment if authentication succeeded.

• If not successful: connection aborted

VNC protocol
ProtocolVersion Handshake

Security Handshake

SecurityResult Handshake

Client/Server Init messages

Frames!

VNC protocol - Init messages

• Client sends ClientInit message with a
‘shared_flag’

• Shared flag determines mode of operation:

• 1 = Allow other connections to remain if
present

• 0 = Disconnect other connections for
exclusive access

VNC protocol - Init messages

• Server sends ServerInitMsg, containing:

• name of the server

• width/height of shared screen in pixels

• 16 bytes of pixel information encoding
information

VNC protocol
ProtocolVersion Handshake

Security Handshake

SecurityResult Handshake

Client/Server Init messages

Frames!

VNC protocol - frame
messages

• After the initial handshake, the server sends a
complete representation of the server’s screen to
the client

• One should be able to reconstruct a complete
screenshot from the screen using this first
message!

VNC protocol - frame
messages

VNC protocol - frame
messages

120x120

1160x960

120x840

VNC protocol - frame
messages

120x120

1160x960

120x840

Compress & Encode

VNC protocol - frame
messages

Header

VNC protocol - frame
messages

• Complete screen update first!

• Then: Client and Server can send messages at
will:

• containing keystrokes, mouse pointer
movements, screen updates.

• For our purpose too much effort at this stage

VNC protocol - Recap
ProtocolVersion Handshake

Security Handshake

SecurityResult Handshake

Client/Server Init messages

Frames!

Bro Wishlist
• What would we want to see from a security perspective:

• are there RFB servers in the network?

• from where and when are they accessed, for how long?

• which software is used?

• what kind of authentication is used, was it successful?

• other useful information Server name, screen dimensions?

• Bonus exercise: can we get a screenshot? 😇

Dev/test/deploy

Dev/test/deploy

• Ingredients for creating a protocol parser:

• wireshark and loads of sample PCAPs

• knowledge of BinPac and Bro policy writing

• knowledge of the protocol (obviously)

Dev

BinPac (protocol parsing)

Scripts

Testing

• Define events to emit

• Define protocol messages

• BinPac creates C++ parser

Define DPD to identify streams to
process

Connect events from parser to
log output

Create tests based on pcaps

Supply suspected output of
your parser

Dev - where to start

• documentation on-line

• learn from existing protocol parsers

• https://github.com/grigorescu/binpac_quickstart

• creates some boilerplate code for you to get your parser up
and running

• bro-dev mailinglist

• great supportive community!

Dev - be prepared

• #1 - No matter how simple the protocol, there's
always a catch

• #2 - No matter how well your protocol parser is,
someone will always present you with a pcap
that doesn't parse

Dev - be prepared

• #1 - No matter how simple the protocol, there's
always a catch

• Ideally, we would like to have something like this:

BinPac (protocol parsing)

Each message self-descriptive (SMB!)

Dev
BinPac

Dev
BinPac

Dev

• RFB messages do not contain e.g. a command
identifier, or total size of the message

• How to interpret a set of bytes depends on the
messages before it

• rfb-protocol-analyzer.pac implements state
machine

BinPac

State machine
‘state’ - defines

step in our
protocol.

After
successfully

parsing
a message,
‘state’ gets
updated

accordingly.

BinPac

State machine
BinPac

Awaiting Server Banner

Awaiting Client Banner

Awaiting Server Auth Types 3.3 Awaiting Server Auth Types 3.7

3.73.3

Finish

... ...

State machine
BinPac

Awaiting Server Banner

Awaiting Client Banner

Awaiting Server Auth Types 3.3 Awaiting Server Auth Types 3.7

3.73.3

Finish

... ...

Dev - be prepared

• #2 - No matter how well your protocol parser is,
someone will always present you with a pcap
that doesn't parse

Reality...
BinPac

• Many different dialects, custom features and
specific implementations hamper parsing

• E.g. custom authentication protocols

Dev - events

Logical breakdown
of events

Scripts

Dev - DPD
Scripts

• Supply DPD signature

Dev - test

• Test framework allows you to submit a sample
pcap with expected output for (regression)
testing

Testing

Dev - test

• Simple test:

Testing

• Execute:

Dev
BinPac (protocol parsing)

Scripts

Testing

• Deploy!

Dev - deploy

Dev - deploy

Dev - deploy
• What would we want to see from a security perspective:

• are there RFB servers in the network?

• from where and when are they accessed, for how long?

• which software is used?

• what kind of authentication is used, was it successful?

• Server name, screen dimensions?

• Bonus exercise: can we get a screenshot? 😇

Dev - deploy

• Are there RFB servers in the network?

• bro-cut id.resp_h < rfb.log | sort | uniq

Dev - deploy

• From where and when are RFB servers
accessed, for how long?

• bro-cut -d ts id.orig_h id.resp_h service duration
< conn.log | grep rfb

$ bro-cut -d ts id.orig_h id.resp_h service duration < conn.log | grep rfb
2016-03-27T17:45:51+0200 192.168.2.115 192.168.2.125 rfb 1.775081
2016-03-27T17:45:53+0200 192.168.2.115 192.168.2.125 rfb 2.778796
2016-03-27T17:45:48+0200 192.168.2.115 192.168.2.125 rfb 2.813754

Dev - deploy

• Which software is used?

• bro-cut client_major_version client_minor_version <
rfb.log | sort | uniq -c | sort -nr

• bro-cut server_major_version server_minor_version <
rfb.log | sort | uniq -c | sort -nr

• Look for server/client versions: e.g. 3.889 = most likely
Apple Remote Desktop

Dev - deploy

• What kind of authentication is used, was it
successful?

• bro-cut id.resp_h authentication_method auth <
rfb.log
$ bro-cut id.resp_h authentication_method auth < rfb.log
192.168.2.125 VNC T
192.168.2.125 VNC F
192.168.2.125 VNC -

Dev - deploy

• What kind of Server name, screen dimensions
are used, was the connection exclusive?

• bro-cut id.resp_h desktop_name name width
height share_flag < rfb.log

$ bro-cut id.resp_h desktop_name name width height share_flag < rfb.log
192.168.2.125 root's X desktop (martin-VirtualBox:1) 1024 768 T
192.168.2.125 - - - -
192.168.2.125 - - - -

Recap

• We have seen why it is interesting to parse RFB

• We have seen how RFB works and what
information we can get from parsing the protocol

• We have seen what steps to take to build and
test a protocol parser

• We have seen how we can answer our research
questions

Recap
• First version of RFB parser commit:

• Will be in 2.5 release

Future work

• Handle different dialects/authentication types/
implementations (pcaps welcome!)

• TLS over VNC support

• Generating screenshot files from initial screen
update 😎

• martin.vanhensbergen@fox-it.com

Thanks

• Thanks for listening!

