
Broker
Matthias Vallentin

UC Berkeley
International Computer Science Institute (ICSI)

BroCon '16

Communication in Bro

2015

Broker
0.4

2007

Bro
Cluster

Frontend Nodes

Internet

Tap

Internal
NetworkFirewall

Backend Nodes

...

Proxy

Manager

Tap

Proxy

...

2008

Python
Bindings

Broccoli

+

2011

Ruby & Perl
Bindings

Broccoli

+

2016/17

Broker
1.0

coming
soon!

2005

Broccoli,
Independent

State

Exploiting Independent State For Network Intrusion Detection

Robin Sommer
TU München

sommer@in.tum.de

Vern Paxson
ICSI/LBNL

vern@icir.org

Abstract

Network intrusion detection systems (NIDSs) critically

rely on processing a great deal of state. Often much of this

state resides solely in the volatile processor memory acces-
sible to a single user-level process on a single machine. In

this work we highlight the power of independent state, i.e.,

internal fine-grained state that can be propagated from one
instance of a NIDS to others running either concurrently or

subsequently. Independent state provides us with a wealth
of possible applications that hold promise for enhancing the

capabilities of NIDSs. We discuss an implementation of in-

dependent state for the Bro NIDS and examine how we can
then leverage independent state for distributed processing,

load parallelization, selective preservation of state across

restarts and crashes, dynamic reconfiguration, high-level
policy maintenance, and support for profiling and debug-

ging. We have experimented with each of these applications
in several large environments and are now working to inte-

grate them into the sites’ operational monitoring. A perfor-

mance evaluation shows that our implementation is suitable
for use even in large-scale environments.

1 Introduction

Network intrusion detection systems (NIDSs) of any so-
phistication rely on managing a significant amount of state.
The state reflects the NIDS’s model of the communications
currently active in the network and also the NIDS’s analy-
sis over time, both in the past (previous activity by hosts or
users, suspicion levels, relationships between connections)
and in the future (timers used to model protocol interac-
tions and to drive detection algorithms). Managing this
state raises significant issues, among which are its sheer
volume [7]. Another issue that to date has received less
attention, concerns the degree to which the state is often
tied to a single executing process. That is, often much of a
NIDS’s state resides solely in the volatile processor mem-
ory accessible to a single user-level process on a single ma-
chine. Generally, any state that exists more broadly than

in the context of a single process is a minor subset of the
NIDS process’s full state: either higher-level results (often
just alerts) sent between processes to facilitate correlation or
aggregation, or log files written to disk for processing in the
future. The much richer (and bulkier) internal state of the
NIDS remains exactly that, internal. It cannot be accessed
by other processes unless a special means is provided for
doing so, and it is permanently lost upon termination of the
NIDS (which, due to a crash, may happen unexpectedly).

In this work we argue for the great utility of incorpo-
rating independent state into intrusion detection systems.
The goal is to enable much of the semantically rich, de-
tailed state that hitherto could exist only within a single ex-
ecuting process to become independent of that process. We
consider two basic types of independent state. Spatially in-

dependent state can be propagated from one instance of a
NIDS to other, concurrently executing, instances. Tempo-

rally independent state continues to exist after an instance
(or all instances) of a NIDS has exited. For both types of
independence, the state essentially exists “outside” of any
particular process.

Our contribution is not the fundamental notion of state
that can be shared between processes or accessed over
time—that already appears in numerous existing systems—
but rather the benefits of doing so within a framework that
(i) is unified, i.e., it covers all of the systems’ state in the
same way, and (ii) encompasses fine-grained state. This
second is particularly important: by keeping fine-grained
state, rather than only aggregated state such as alerts or ac-
tivity summaries, we can continue to process the indepen-
dent state using the full set of mechanisms provided by the
system. We explore such a framework by implementing in-
dependent state for the Bro intrusion detection system [16].

Bro is a highly stateful NIDS. Its basic model has two
main layers: event generation and policy script execu-
tion. Events are generated by an event engine which per-
forms policy-neutral analysis of network traffic at differ-
ent semantic levels. For example, there are events for
attempted/established/terminated/rejected connections, the
requests and replies for a number of applications, and suc-
cessful and unsuccessful user authentication. The user

Outline

• Overview

• API

• Performance

• Outlook

Overview

Broker = Bro'ish data model
+ publish/subscribe communication

+ distributed key-value stores

Publish/Subscribe Communication

Internet
Organization

C++

C++

C++
Result

ModelModelModel

FileFileFile

Distributed Key-Value Stores

M

C

endpoint

master

clone

M

C

M

C C

CC

Broker's Data Model

Arithmetic

string

Time
boolean

count

integer

real

interval

timestamp

Network
address

port

subnet

none

Container
vector

set

table

Other

API

Lessons Learned

• Functionality: It Just Works

• Usability: no native type support, lots of "data wrapping"

• Semantics: no support for nonblocking processing

Props to
Jon Siwek!

using	namespace	broker;	

init();	

endpoint	ep{"sender"};	
ep.peer("127.0.0.1",	9999);	

ep.outgoing_connection_status().need_pop();	

auto	msg	=	message{	
		"my_event",	
		"Hello	C++	Broker!",	
		42u	
};	

ep.send("bro/event",	msg);	

ep.outgoing_connection_status().need_pop();

Current API
Initialize the Broker library.

(Only one broker instance per process allowed.)

Create a local endpoint.

Block until connection status changes.

When communicating with Bro, the first
argument must be a string identifying the event
name. The remaining values represent the event

arguments.

Publish the event under topic bro/event.

Block until connection status changes.

using	namespace	broker;	

context	ctx;	

auto	ep	=	ctx.spawn<blocking>();	
ep.peer("127.0.0.1",	9999);	

auto	v	=	vector{	
		"my_event",	
		"Hello	C++	Broker!",	
		42u	
};	

ep.publish("bro/event",	v);	

New API
A context encapsulates global state for a set of
endpoints (e.g., worker threads, scheduler, etc.)

Create a vector of data.
New semantics: a message is a topic plus data,

not a sequence of data.

Publish the event under topic bro/event.

Create a local endpoint with blocking API.

Blocking vs. Non-Blocking API
context	ctx;	
auto	ep	=	ctx.spawn<blocking>();	

ep.subscribe("foo");	
ep.subscribe("bar");	

//	Block	and	wait.	
auto	msg	=	ep.receive();	
cout	<<	msg.topic()	
					<<	"	->	"	
					<<	msg.data()	
					<<	endl;	

//	Equivalent	semantics;	functional	API.		
ep.receive(
		[&](const	topic&	t,	const	data&	d)	{	
				scout	<<	t	<<	"	->	"	<<	d	<<	endl;	
		}	
)

context	ctx;	
auto	ep	=	ctx.spawn<nonblocking>();	

//	Called	asynchronously	by	the	runtime.	
ep.subscribe(
		"foo",	
		[=](const	topic&	t,	const	data&	d)	{	
				cout	<<	t	<<	"	->	"	<<	d	<<	endl;	
		}	
);	

//	As	above,	just	for	a	different	topic.	
ep.subscribe(
		"bar",	
		[=](const	topic&	t,	const	data&	d)	{	
				cout	<<	t	<<	"	->	"	<<	d	<<	endl;	
		}	
);

Data Store APIs
//	Setup	endpoint	topology.	
context	ctx;	
auto	ep0	=	ctx.spawn<blocking>();	
auto	ep1	=	ctx.spawn<blocking>();	
auto	ep2	=	ctx.spawn<blocking>();	
ep0.peer(ep1);	
ep0.peer(ep2);	
//	Attach	stores.	
auto	m	=	ep0.attach<master,	memory>("lord");	
auto	c0	=	ep1.attach<clone>("lord");	
auto	c1	=	ep2.attach<clone>("lord");	
//	Write	to	the	master	directly.	
m->put("foo",	42);	
m->put("bar",	"baz");	
//	After	propagation,	query	the	clones.	
sleep(propagation_delay);	
auto	v0	=	c0->get("key");		
auto	v1	=	c1->get("key");	
assert(v0	&&	v1	&&	*v0	==	*v1);

M

CC

Available backends:
1. In-memory
2. SQLite
3. RocksDB

Data Store APIs
// Blocking API. Returns expected<data>.
auto v = c->get<blocking>("key");

// Non-blocking API.
// Runtime invokes callback.
c->get<nonblocking>("key").then(
 [=](data& d) {
 cout << "got it: " << d << endl;
 },
 [=](error& e) {
 cerr << "uh, this went wrong: "
 << e
 << endl;
 }
);

M

CC

Performance

Simple Benchmark
• Throughput analysis

• Two endpoints: sender & receiver

• Message = conn.log entry

• System: MacBook Pro

• 16 GB RAM

• 4 x 2.8 GHz Core i7

Throughput

0

20K

40K

60K

new old
Version

Th
ro

ug
hp

ut
 (m

sg
/s

ec
)

40%

Outlook

Roadmap to 1.0

1. Finish Python bindings

2. Implement Bro endpoint

3. Pattern matching in Bro

4. Flow control

function	lookup(key:	string)	:	any;	

when	(local	x	=	lookup("key"))	
		{	
		local	result	=	"";	
		switch(x)	
				{	
				case	addr:	
						if	(x	in	10.0.0.0/8)	
								result	=	"contained";	
				case	string:	
						result	=	"error:	lookup()	failed:	"	+	x;	
				}	
		}

from	ipaddr	import	*	
from	broker	import	*	

ctx	=	Context()	
source	=	ctx.spawn(Blocking)	
sink	=	ctx.spawn(Blocking)	
source.peer(sink)	

sink.subscribe("foo",		
															lambda	t,	d:	print("%s:	%s"	%	(t,	d)))	

source.publish("foo.baz",	
															[1,	3.14,	"qux",	IPv4Address('1.2.3.4')])	

Flow Control

Flow Control

Intermediate
buffer

STILL OVERFLOWING

Flow Control
Reject

at the boundary

CAF: Messaging Building Block

• CAF = C++ Actor Framework

• Implementation of the Actor Model

• Light-weight, type-safe, scalable

• Network transparency

Bro Data Flows

Master

Workers

Packets

Events

Logs
write(2)

Questions?
Docs:	https://bro.github.io/broker	
Chat: https://gitter.im/bro/broker	
Code: https://github.com/bro/broker

https://bro.github.io/broker
https://gitter.im/bro/broker
https://github.com/bro/broker

