
UNIVERSITY OF
CALIFORNIA

Scan-detection Internals: clusterization
and netcontrol for active-response

Aashish Sharma

14th September 2016
#BroCon2016

• Managed and operated by UC for the U.S. Department of Energy
• >200 University of California faculty on staff at LBNL
• 4200 Employees, ~$820M/year Budget
• 13 Nobel Prizes
• 63 members of the National Academy of Sciences

(~3% of the Academy)

• 18 members of the National Academy of Engineering,
2 of the Institute of Medicine

• Birthplace of Bro

Over 10,000 visiting scientists (~2/3 from universities) use
Berkeley Lab research facilities each year

Advanced
Light

Source

Joint Genome Institute

Molecular
Foundry

Energy Sciences Network National Energy Research
Supercomputer

FLEXlab

•
•

–
•
•

•

Philosophically a scan is an attribution or an intentionality problem but
operationally we want to make it a measurement problem.

- Partha Banerjee, LBL

•

•
•
•
•

*M. Javed and V. Paxson. Detecting stealthy, distributed SSH brute-forcing. In
Proc. ACM SIGSAC conference on Computer & communications security, pages
85–96, 2013

Q. How many incidents are detected
at Scan Phase?

Ans: We might not even have an
incident yet (at the scan phase)

Q. Of all the incidents we detect, for
how many can we go back to and find
the scan-phase that might have
caused it ?

Q. How many incidents happen
without any scan-phase/recon ?

Sharma, A., Kalbarczyk, Z., Barlow, J., and Iyer, R. Analysis of security data from a large computing
organization. In Dependable Systems & Networks (DSN) (2011), IEEE.

•

•

S0 Connection attempt seen, no reply.
S1 Connection established, not terminated
SF Normal establishment and termination.
REJ Connection attempt rejected.
S2 Connection established and close
attempt by originator seen (but no reply from
responder).
S3 Connection established and close
attempt by responder seen (but no reply from
originator).
RSTO Connection established, originator
aborted (sent a RST).
RSTR Established, responder aborted.
RSTOS0 Originator sent a SYN followed by a
RST, we never saw a SYN-ACK from the responder.
RSTRH Responder sent a SYN ACK followed
by a RST, we never saw a SYN from the (purported)
originator.
SH Originator sent a SYN followed by a FIN,
we never saw a SYN ACK from the responder
(hence the connection was "half" open).
SHR Responder sent a SYN ACK followed by
a FIN, we never saw a SYN from the originator.
OTH No SYN seen, just midstream traffic (a
"partial connection" that was not later closed).

•
–

•
–

•
–

•
–

•
–

UDP
check

skip
sources

skip
services

skip
nets

skip
ports

backscatter

distinct_peers/
shutdown
Threshold

Landmine

AddressScan

PortScan

LowPortTroll

● $Id: scan.bro 7073 2010-09-13 00:45:02Z vern $
● 720 lines of code
● Need to clusterize
● &sync not useful anymore

Established?
Yes

No

•
•
•
•
•
•
•

•

•

•

KnockKnock

● Incoming remote IP connection and checks it
against table of known-services for the
LBNL IP and accesses if that's a good or bad
connection.

● Policy is adaptive based on popularity of
ports

LandMine

● Policy - ingests the list of allocated subnets
from a text-file using input-framework

● Any connection not in the above list is a
Darknet Connection

● “N” such connections lead to a conclusion
that this is a scanner

● Block the IP.

AddressScan & LowPortTrolling
● “Bro treats connections differently depending on

application protocol.
● Bro only performs bookkeeping if the connection

attempt failed (was either unanswered, or elicited a
TCP RST response).

● For others, it considers all connections, whether or
not they failed. It then tallies the number of distinct
destination addresses to which such connections
(attempts) were made.

● If the number reaches a configurable parameter N,
then Bro flags the source address as a scanner. By
default, Bro sets N = 100”

Backscatter
● Generally Victims of DoS attacks
● result of address spoofing
● Not really scanners

• Communication overhead -

•

•
•

–
•
•

Return

module Clus;

export {

 global m_w_add: event (ip: addr);
 global w_m_new: event (ip: addr);
 global add_to_cache: function(ip: addr);

 global intermediate_cache: table [addr] of string &redef;

}

@if (Cluster::is_enabled())
@load base/frameworks/cluster
redef Cluster::manager2worker_events += /Clus::m_w_add/;
redef Cluster::worker2manager_events += /Clus::w_m_new/;
@endif

function log_reporter(msg: string)
{
 event reporter_info(current_time(), msg,
peer_description);
}

event new_connection(c: connection)
{
 local ip = cidorig_h;

 if (ip !in intermediate_cache)
 {
 add_to_cache(ip) ;
 }
}

function add_to_cache(ip: addr)
 {
 log_reporter(fmt ("add_to_cache %s", ip));
 intermediate_cache[ip] = fmt("%s",peer_description);
@if (Cluster::is_enabled())
 event Clus::w_m_new(ip);
@endif
 }

@if (Cluster::is_enabled() && Cluster::local_node_type() == Cluster::MANAGER)
event Clus::w_m_new(ip: addr)
 {
 log_reporter(fmt ("w_m_new: %s", ip));
 if (ip in intermediate_cache)
 return;

 intermediate_cache[ip] = fmt("%s",peer_description);
 event Clus::m_w_add(ip);
 }
@endif

@if (Cluster::is_enabled() && Cluster::local_node_type() != Cluster::MANAGER)
event Clus::m_w_add(ip: addr)
 {
 log_reporter(fmt ("m_w_add: %s", ip));
 intermediate_cache[ip] = fmt("%s",peer_description);
 }
@endif

Heuristic OldScan scan-NG

LandMine Limited: Manual define Landmine
addresses
const landmine_address: set[addr] &redef;

Extensive - derives allocated vs unallocated subnets
 if (resp in Site::local_nets && resp !in
Site::subnet_table)

AddressScan Same
global distinct_peers: table[addr] of
set[addr]

No Change

Shutdown Threshold Same > N failures No change

Backscatter Limited to a few ports
const backscatter_ports = {
 80/tcp, 53/tcp, 53/udp, 179/tcp, 6666/tcp,
6667/tcp,
 } &redef;

Port Agnostic
Relies on a new logic to infer reflection attacks and
static src ports
 if (|distinct_backscatter_peers[orig][orig_p]| < 2)

Knockknock Did not exist Maintains list of valid services in the network
Tracks failed connections to non-existing services
Uses really low and dynamic thresholds

clusterized No Yes

false +ve Plenty due to directionality problems due
to content_gaps

Very few overall - still testing

Memory tables and sets use hyperloglog (opaque of cardinality) resulting in
80% less memory usage

Extended feature

Consistent

Extended feature

New

New

Improvement

•
•
•
•
•
•

Counter Name Counters ~ 1 day Counters ~ 7 days

new_conn_counter 184,772,975 1,569,935,400 (100%)

is_catch_release_active 273578054 (148%) 2,382,883,254 (151.78%)

not_scanner 170877124 (92.47%) 797,378,521 (50.79%)

darknet_counter
not_darknet_counter

62747298 (33.95%)
13601622 (7.36%)

103,620,129 (6.60%)
320,578,718 (20.41%)

already_scanner_counter 79308450 (42.92%) 435,007,325 (27.70%)

filter_entry
filter_success

58024703 (31.40%)
27135590 (14.68%)

384,651,055 (24.5%)
185,705,196 (11.82%)

c_knock_filter
c_knock_checkscan

58024703 (31.40%)
21936393 (11.87%)

384,651,055 (24.5%)
151,338,638 (9.63%)

c_land_filter
c_land_checkscan

21392978 (11.57%)
19848677 (10.74%)

384,651,055 (24.5%)
32,029,192 (2.04%)

c_backscat_filter
c_backscat_checkscan

58024703 (31.40%)
2005200 (1.08%)

384,651,055 (24.5%)
121,802,144 (7.75%)

c_addressscan_filter
c_addressscan_checkscan

58024703 (31.40%)
4510730 (2.44%)

384,651,055 (24.5%)
139,784,051 (8.9%)

worker_to_manager_counter 27133670 (14.68%) 176,982,937 (11.27%)

run_scan_detection 24965156 (13.51%) 173,071,224 (11.02%)

31%

100%

150%

43%

15%

13%

12% 10%2.5% 1%

31% 31%11%

.5 %

•

•
–

•

•

•

•
•
•

–

–
•

–

1473416025.833145 Scan::KnockKnockScan 108.61.123.72 scanned a total of 12 hosts:
[80/tcp] (port-flux-density: 6) (origin: FR distance: 5528.29 miles) - 108.61.123.72 --
manager Notice::ACTION_DROP,Notice::ACTION_LOG 60.000000 F -

1473419748.634896 Scan::WebCrawler 108.61.123.72 crawler is seen: yacybot
(/global; amd64 FreeBSD 10.3-RELEASE-p7; java 1.8.0_92; GMT/en) http://yacy.net/bot.html -
108.61.123.72 worker-11 Notice::ACTION_LOG

1473419748.634896 Scan::PurgeOnWhitelist 108.61.123.72 is removed from
known_scanners after whitelist: [scanner=108.61.123.72, status=T, detection=KnockKnockScan,
detect_ts=1473416025.886353, event_peer=worker-11, expire=F] 108.61.123.72 worker-11
Notice::ACTION_LOG 3600.000000 F

● removes from known_scanners
● removes from catch-n-release hell
● removes ACLD blocks on the router, if any

Block is removed due to catch-n-release timer expiration kicking in ...

-

-
-

S.no Uniq scanners in /24 How many such /24

1 3 55634

2 10 4141

3 25 913

4 100 53

5 200 8

May 8 08:08:35 Scan::KnockKnockScan 112.74.135.36 scanned a total of 3 hosts: [21/tcp]
(port-flux-density: 6) (origin: CN distance: 0.00 miles) on 128.3.28.64 128.3.20.30 128.3.28.110 112.74.135.36
manager Notice::ACTION_LOG,Notice::ACTION_DROP 3600.000000 F

May 8 08:08:35 History::SF_to_Scanner outgoing SF to scanner 112.74.135.36 112.74.135.36
Notice::ACTION_LOG

Conn.log :

May 8 03:49:46 112.74.135.36 61291 128.3.28.110 21 tcp 3.059543 0 0 S0
May 8 03:49:55 112.74.135.36 61291 128.3.28.110 21 tcp S0
May 8 03:49:46 128.3.28.110 3 112.74.135.36 10 icmp 9.073815 152 0 OTH
May 8 03:51:23 131.243.2.64 20 112.74.135.36 56755 tcp 0.789239 520 0 SF
May 8 03:51:26 131.243.2.64 20 112.74.135.36 57266 tcp 0.656309 0 0 SF
May 8 03:51:29 131.243.2.64 20 112.74.135.36 57735 tcp 0.672116 0 0 SF
May 8 03:51:31 131.243.2.64 20 112.74.135.36 58196 tcp 0.381356 0 0 SF
May 8 03:51:34 131.243.2.64 20 112.74.135.36 58595 tcp 0.722489 0 0 SF
May 8 03:51:37 131.243.2.64 20 112.74.135.36 59047 tcp 0.378877 0 0 SF
May 8 03:51:40 131.243.2.64 20 112.74.135.36 59431 tcp 0.543354 0 0 SF
May 8 03:51:46 131.243.2.64 20 112.74.135.36 60295 tcp 0.569139 0 0 SF
May 8 03:51:48 131.243.2.64 20 112.74.135.36 60692 tcp 0.783772 0 0 SF

•

•
•

•
•

Sep 5 23:13:10 Scan::KnockKnockScan 131.117.245.15 scanned a total of 12 hosts:
[4028/tcp] (port-flux-density: 2) (origin: IQ distance: 7482.10 miles)

Sep 5 23:13:15 Scan::KnockKnockScan 124.106.53.200 scanned a total of 5 hosts:
[4028/tcp] (port-flux-density: 3) (origin: PH distance: 6999.04 miles)

Sep 5 23:48:19 Scan::KnockKnockScan 125.26.23.65 scanned a total of 3 hosts:
[4028/tcp] (port-flux-density: 6) (origin: TH distance: 7855.57 miles)

● Provides summary of
○ when scan started,
○ when it ended,
○ when was it detected
○ how many connections were made by the scanner
○ how many uniq hosts did it touch
○ latency of detection
○ total duration of the scan

● Clusterized
● Memory efficient - relies on opaque of cardinality
● Incremental scan-summary for the lifetime of the scanner

Conn_table

10 mins - keep building
state for ALL connections

check if known_scanner

expire

Populate Scan_summary on worker

Yes

20 Mins

keep updating counts on workers

manager_update_scan_summary

60 Mins

Detection Time

Bro Broker ACLD Quagga Routers

Broker: Netcontrol acld_add_rule

Broker:

Broker:

ACLD: Arrival timestamp

ACLD: Completion timestamp

800 μs

bro network_time()

system_time()

system_time()

timestamp Action Delta (tn - tn-1) Source

1473663871.195220 Scan::KnockKnockScan t=0s notice.log

1473663871.195220 NetControl::REQUESTED t=0s netcontrol.log

1473663871.226191 Brokerlisten: Got event 30.9 ms broker.log

1473663871.226378 brokerlisten:INFO:Sending
to ACLD

187 μs broker.log

1473663871.226359 ACLD Arrival timestamp -0.19 μs acld.log

1473663871.226420 ACLD Complete
Timestamp

61 μs acld.log

1473663871.227030 brokerlisten:INFO:Received
from ACLD

610 μs broker.log

•
•
•
•

•
•

•

•
–

•
–

•
–

•

•
–

•
•
•
•
•
•

•

Users Developers Bro People

notice.log and
scan-summary.log

access to known_scanners
table

how to make table persistent

memory efficient use of hyperloglog and
bloom-filters

hard to find data-structure
sizes/usage

whitelist capability/ Dynamic
darknets and configs on fly

input-framework + tap into
reporter_error event

dealing failures in input-files
due to lame typos

stable code extendable and modular Manager CPU is mystery

plug & play clusterization insights ability to account of w2m and
m2w events

speed & accuracy you can fix scan.bro Should scan-detection be in
C++ land instead of policy land
?

•
•

–
–

•

•
•
•
•

•

–
–

•
•

•
•

–
•

–

•
•

–
–
–

•
–

•
•
•

•
•
•
•
•
•
•
•

