A

fFrfrrrnrrr .

BERKELEY LAB

Lawrence Berkeley National Laboratory

U.S. DEPARTMENT OF

ENERGY

UNIVERSITY OF
CALIFORNIA

| BERKELEY LAB @ ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Scan-detection Internals: clusterization
and netcontrol for active-response

Aashish Sharma

14th September 2016
#BroCon2016

80 Years of World-Leading Team Science at
Lawrence Berkeley National Laboratory

¥ iy

1}1

Managed and operated by UC for the U.S. Department of Energy
>200 University of California faculty on staff at LBNL

4200 Employees, ~$820M/year Budget

13 Nobel Prizes

63 members of the National Academy of Sciences
(~3% of the Academy)

18 members of the National Academy of Engineering,
2 of the Institute of Medicine

Birthplace of Bro

World-Class User Facilities
Serving the Nation and the World

o |

Joint Genome Institute _

FLEXlab : National Energy Research
Supercompu

" _'---{.

gae 7 7

PR L

i S
p—

—_—

e ——

e - o

N
-

Over 10,000 visiting scientists (~2/3 from universities) use
Berkeley Lab research facilities each year

Overview

A case for scan-detection

Internals of scan-detection

— what s a scan

Clusterization and its problems
Scan-NG features and how are those
implemented

What's in for the future

Philosophically a scan is an attribution or an intentionality problem but
operationally we want to make it a measurement problem.

- Partha Banerjee, LBL

S
A
rrrrrrr ""|

BERKELEY LAB

Recon

e We want to know if scans are coordinated,
distributed™

* What is the scale of arecon ?

 whatis intention of a recon ?

* No clear success criteria of a recon

* Don't even know what attackers found out,
although the traffic went through your network

*M. Javed and V. Paxson. Detecting stealthy, distributed SSH brute-forcing. In
Proc. ACM SIGSAC conference on Computer & communications security, pages
85-96, 2013

TABLE IV. ATTACK PHASES

Attack Description Incident
Phase Count
Attackers try to identify vulnerable hosts
Scan Phase and gather information about the target, 1/1
e.g., services that are running.
Attackers gain access to the system (e.g.,
Breach using stolen or guessed credentials or by 3
B i i 30/39
Phase exploiting system misconfiguration (e.g.,
world writable files on an open share).
Attackers exploit vulnerability (e.g.,
Penetration buffer overflow vulnerability) to obtain 9/10
unauthorized access to the system.
Attackers set up the compromised host to
accept remote commands and provide
Control reusable access (€.g., connect to 21/23
command and control channel or install a
backdoor).
Attackers hide their malware and tracks
by embedding the malware in the
: system, e.g., installing a rootkit, deleting
L system logs, adding ssh keys to B2
authorized _key file, changing
configuration files.
Data Attackers change or modify data in the
extraction/ system, e.g., deface web pages, copy 7/7
modification | database content, or steal information.
Attackers start misusing the system for
Attack- z d
relay/ personal gain, ¢.g., spam, D.DO.S using a 48/61
; bot, password harvesting, distributing
THsuse warez, spreading virus, and phishing.

Q. How many incidents are detected
at Scan Phase?

Ans: We might not even have an
incident yet (at the scan phase)

Q. Of all the incidents we detect, for
how many can we go back to and find
the scan-phase that might have
caused it ?

Q. How many incidents happen
without any scan-phase/recon ?

Sharma, A., Kalbarczyk, Z., Barlow, J., and lyer, R. Analysis of security data from a large computing
organization. In Dependable Systems & Networks (DSN) (2011), IEEE.

=

A
freeeee |"'|

BERKELEY LAB

Why scan-detection ?

* Important to know about malicious activity

early and quickly
* Attention to recon is as important as any

other defense mechanism

Characteristics of network traffic

SHR, 1583239, 1% # S0 Connect?on attempt seen, no repl.y.
RSTOSO, RSTO, 1834802, _ REJ, 342958, 0% #S1 Connection established, not terminated
511913, 0% 1% OTH| 7658024, SH, 305142, 0% # SF Normal establishment and termination.
3%: # REJ Connection attempt rejected.
RSTR, 1652595,1%___———— #S2 Connection established and close
RSTRH, attempt by originator seen (but no reply from
590942, 0% responder).
#S3 Connection established and close
attempt by responder seen (but no reply from
originator).

#RSTO Connection established, originator
aborted (sent a RST).

#RSTR Established, responder aborted.

e R #RSTOSO Originator sent a SYN followed by a
RST, we never saw a SYN-ACK from the responder.
#RSTRH Responder sent a SYN ACK followed
$2, 312317, 0% by a RST, we never saw a SYN from the (purported)
originator.

SH Originator sent a SYN followed by a FIN,
we never saw a SYN ACK from the responder
(hence the connection was "half" open).

SHR Responder sent a SYN ACK followed by
a FIN, we never saw a SYN from the originator.

OTH No SYN seen, just midstream traffic (a
Connection States "partial connection" that was not later closed).

1000310,
1%

~

freeeee

A
||||

BERKELEY LAB

Strategies for scan-detection

Summary statistics

“N” IP or portin “t” time

Signature Based

eg. Metasploit signature

Behavior Based

Nmap scans start with 80/tcp, 443/tcp + icmp

Probabilistic methods

Threshold Random Walk

know_your_network approach

Knockknock and Landmine

Overly simplified OldScan-1.5.3

skip
services

Established?

backscatter

|

distinct_peers/
shutdown
Threshold

Landmine

AddressScan

PortScan

LowPortTroll

$ld: scan.bro 7073 2010-09-13 00:45:02Z vern $

720 lines of code
Need to clusterize

&sync not useful anymore

frreeeer |ﬂ

BERKELEY LAB

scan.bro - One pill to cure all?

Scan detection needs to be broken into many
sub-parts

e TCP

e UDP

e ICMP

* |PV4

* |IPv6

e external

* internal scanners

Scan-detection: Underlying Reasoning...

* WE KNOW WHAT THEY DON’T KNOW
 WE DON’T KNOW WHAT THEY FOUND OUT

 WE WANT TO KNOW WHAT IS THEY WANT
TO KNOW (hopefully before they find it out)

Heuristics

KnockKnock

Incoming remote IP connection and checks it
against table of known-services for the
LBNL IP and accesses if that's a good or bad
connection.

Policy is adaptive based on popularity of
ports

AddressScan & LowPortTrolling

“Bro treats connections differently depending on
application protocol.

Bro only performs bookkeeping if the connection
attempt failed (was either unanswered, or elicited a
TCP RST response).

For others, it considers all connections, whether or
not they failed. It then tallies the number of distinct
destination addresses to which such connections
(attempts) were made.

If the number reaches a configurable parameter N,
then Bro flags the source address as a scanner. By
default, Bro sets N = 100”

LandMine

e Policy - ingests the list of allocated subnets
from a text-file using input-framework

e Any connection not in the above list is a
Darknet Connection

e “N” such connections lead to a conclusion
that this is a scanner

e Block the IP.

Backscatter
e Generally Victims of DoS attacks
e result of address spoofing
e Not really scanners

frreeeer |ﬂ

BERKELEY LAB

Potential issues with clusterization of
scan-detection

Communication overhead - Scan detection is kind of
the worst-case for distributed analysis: one needs to
count across *all* connections.

In a cluster we split things up via load-balancing, but for
scan detection we need to essentially revert that
through communication.

Timely state synchronization across the workers

Scans are unpredictable rates so cannot employ epochs
— need to detect fast and slow scanners both

How to implement dynamic thresholds

Detection needs to run in both cluster and standalone
setup

Event

connection_attempt

connection_established

connection_half_finished

connection_pending

connection_rejected

connection_reset

connection_state_remove

new_connection

— partial_connection

Events Table
Description

This event is raised when an originator unsuccessfully attempted to establish a connection. “Unsuccessful” is defined as at
least tcp_attempt_delay seconds having elapsed since the originator first sent a connection establishment packet to the
destination without seeing a reply

Generated when seeing a SYN-ACK packet from the responder in a TCP handshake. An associated SYN packet was not seen
from the originator side if its state is not set to TCP_ESTABLISHED. The final ACK of the handshake in response to SYN-ACK may
or may not occur later, one way to tell is to check the history field of connection to see if the originator sent an ACK, indicated
by ‘A’ in the history string.

Generated when one endpoint of a TCP connection attempted to gracefully close the connection, but the other endpoint is in
the TCP_INACTIVE state. This can happen due to split routing, in which Bro only sees one side of a connection.

Generated for each still-open TCP connection when Bro terminates.

Generated for a rejected TCP connection. This event is raised when an originator attempted to setup a TCP connection but the
responder replied with a RST packet denying it.

Generated when an endpoint aborted a TCP connection. The event is raised when one endpoint of an established TCP
connection aborted by sending a RST packet.

Generated when a connection’s internal state is about to be removed from memory. Bro generates this event reliably once for
every connection when it is about to delete the internal state. As such, the event is well-suited for script-level cleanup that
needs to be performed for every connection. This event is generated not only for TCP sessions but also for UDP and ICMP
flows.

Generated for every new connection. This event is raised with the first packet of a previously unknown connection. Bro uses a
flow-based definition of “connection” here that includes not only TCP sessions but also UDP and ICMP flows

Generated for a new active TCP connection if Bro did not see the initial handshake. This event is raised when Bro (observed
traffic from each endpoint, but the activity did not begin with the usual connection establishment

JRCANECTIRE DIRGRAM - 1

T I " IS-SCQ“_“{{‘ —

¢<kablic)ned
el A I,
Triphe) | [Rleme
S0 SN | clet Lavd i e]
-_.———.__—._.—-—-__'- b S
endsn o 0, whboud) sS4/
g <o b)= [tk Batlescahn [
ei ek 2d -Q}

chec

§f¢éﬂ§£am“—d3

st |9e85\ [Gaciocdelc
bbwﬂ' S{ﬂﬂnﬂf(
LJ RW H 16 W]

I
LE

AROINTECTORE - OIRGRAMN - 2, - knodilo ke Saan

ci Chedde kﬂﬁblf-.[(ffbc;
| |

Chegh lwde ~SCRN

Tt
Tetflor Dy

-~
A
rrrrrrr |"'|

BERKELEY LAB

MANAGER

KnockKnock_valdation

AddressScan_validation
Validation Layer

LandMine_validation

—— e e —

Backscatter_validation

[KNOCK Address LandMine BackScatter
K A L B
NO
RUN SCAN DETECTION
Yes

RUN SCAN DETECTION

Heuristics Layer

S o

check Knockknock

check Address

check LandMine

Check Backscatter

1

l

1

1

Action Layer

l

Scanner

shunt scanner traffic

l

| NetControl

catch-and-release taking over the subsequent blocking

[1
Broker-ACLD
ACLD

Catch-n-release|

=

A
freeeee "'|

BERKELEY LAB

Filtration — what qualifies (or not qualifies) as a potential scan candidate

cSproto == TCP

Internal Scanners

DARKNET

(cSrespSstate ==
TCP_ESTABLISHED)
OR

if (/SF/ in
cSconnSconn_state)

Min_Subnet_check

(state =="OTH" &&
resp_bytes >0)

Pass/fail criteria

Only TCP
connections

Internal scanners
handled separately

Fast-track Darknet

full established
conns not
interesting

mid stream traffic
-ignore

ignore traffic to
host/port this is
primarily
whitelisting

Only TCP and ICMP

- NA -

Fast-track Darknet

full established conns not
interesting

if (| Site::subnet_table| <
MIN_SUBNET_CHECK)
return F;

if ((is_failed(c) | |
is_reverse_failed(c)))

Only TCP connections

Internal host scanning handled
separately

Full established conns not interesting

mid stream traffic - ignore

(cSorigSstate == TCP_SYN_ACK_SENT
&& cSrespSstate == TCP_INACTIVE)
OR

(cSorigSstate == TCP_SYN_SENT &&
cSrespSstate == TCP_INACTIVE)

OR

(cShistory =="F" | | cShistory == "R")
OR

(cShistory == "H" && /s|a/ lin
cShistory))

TCP and ICMP
(UDP disabled by default)

Internal host scanning handled
separately

we ignore all darknet connections since
LandMine will take care of it

Full established conns not interesting

if (established) return"";

Ignore if :

1) outbound && service in
skip_outbound_services

2) local_address

3) origin skin_scan_sources

4) origin skip_scan_nets

5) outbound and [resp, service] in

skip_dst_server_ports

frreeeer |I/ﬂ

BERKELEY LAB

Simple clusterization

module Clus;

export {
global m_w_add: event (ip: addr);
global w_m_new: event (ip: addr);

global add_to_cache: function(ip: addr);

global intermediate_cache: table [addr] of string &redef;

@if (Cluster::is_enabled())
@load base/frameworks/cluster
redef Cluster::manager2worker_events += /Clus::m_w_add/;
redef Cluster::worker2manager_events += /Clus::w_m_new/;
@endif
function log_reporter(msg: string)
{
event reporter_info(current_time(), msg,
peer_description);
}
event new_connection(c: connection)
local ip = cidorig_h;

if (ip lin intermediate_cache)

add_to_cache(ip) ;

function add_to_cache(ip: addr)
{
log_reporter(fmt ("add_to_cache %s", ip));
intermediate_cache[ip] = fmt("%s",peer_description);
@if (Cluster::is_enabled())
event Clus::w_m_new(ip);
@endif
¥

@if (Cluster::is_enabled() && Cluster::local_node_type() == Cluster::MANAGER)
event Clus::w_m_new(ip: addr)
{
log_reporter(fmt ("w_m_new: %s", ip));
if (ip in intermediate_cache)
return;

intermediate_cache[ip] = fmt("%s",peer_description);
event Clus::m_w_add(ip);

b
@endif

@if (Cluster::is_enabled() && Cluster::local_node_type() != Cluster::MANAGER)
event Clus::m_w_add(ip: addr)

{

log_reporter(fmt ("m_w_add: %s", ip));

intermediate_cache[ip] = fmt("%s",peer_description);

¥
@endif

frreeeer |I/ﬂ

BERKELEY LAB

Connection Events

l

Connection Events

l

Connection Events

l

WORKERS

MANAGER

Connection Events

l

KNOCK| |Address| [LandMin| [BackScatt KNOCK| |Address| |LandMin| |BackScatt KNOCK| |Address| [LandMin| |BackScatt KNOCK| |Address| |LandMin| [BackScatt
{ ! d & { ! ¢ & v ! ¢ & L v d &
K A L B K A L B K A L B K A L B

Workler-1 Worker-2 Worker-3 Worker-N

] | I |] || |]] |] |

RUN SCAN DETECTION
check check Check Check
KnockiNock S RackSeatt

m_w_new_scanner

1

Scanner

|

NetControl Catch-n-release |

Broker-ACLD

Catch-n-release

[_AcD |

~

A
e "'l

BERKELEY LAB

Old vs New

Heuristic OldScan scan-NG
LandMine Limited: Manual define Landmine Extensive - derives allocated vs unallocated subnets
addresses if (resp in Site::local_nets && resp !in

const landmine_address: set[addr] &redef; | Site::subnet_table) Extended feature

AddressScan Same No Change
global distinct_peers: table[addr] of
set[addr .
[addr] Consistent
Shutdown Threshold | Same > N failures No change
Backscatter Limited to a few ports Port Agnostic Extended feature
const backscatter_ports = { Relies on a new logic to infer reflection attacks and
80/tep, 53/tep, 53/udp, 179/tcp, 6666/tcp, | static src ports
6667/tcp, if (|distinct_backscatter_peersforig][orig_p]| < 2)
} &redef;
Knockknock Did not exist Maintains list of valid services in the network

Tracks failed connections to non-existing services
Uses really low and dynamic thresholds

New
clusterized No Yes New
false +ve Plenty due to directionality problems due Very few overall - still testing
to content_gaps Improvement
Memory tables and sets use hyperloglog (opaque of cardinality) resulting in

80% less memory usage

= A
coeeceee] |

BERKELEY LAB

Performance and features

Memory mgmt
Speed detection
Accuracy

dynamic thresholds
Realtime whitelists
FP identification

Performance: Stats.bro

event new_connection(c: connection)

{

for new connections we just want C to the darknet spaces
to speed up reaction time and to avoid tcp_expire _delays of 5.0 sec

if (gather statistics)

{
s_counters$event_peer = fmt ("%s", peer_description);
s_counters$new_conn_counter += 1;

function is_catch_release_active(cid: conn_id): bool
{
if (gather_statistics)
s_counters$is_catch_release_active += 1;

function check_scan(c: connection, established: bool, reverse: bool)

local orig=cidorig_h ;

already a known_scanner
if (orig in Scan::known_scanners && Scan::known_scanners[orig]$status)

iflllgather_statistics)

s_counters$already_scanner_counter += 1;

return ;

}

if (not_scanner(cs$id))

ifllgather_statistics)

s_counters$not_scanner += 1;

return ;
} freereer |I/ﬂ

BERKELEY LAB

Sep 6 09:56:44 Reporter::INFO STATISTICS: [new_conn_counter=1319188748, is_catch_release_active=2012865010, known_scanners_counter=@, not_scanner=1521025761, darknet_counter=93913909, not_darknet_counter=267966286, already_scanner_counter=370319299, filteration_
ntry=08, filteration_success=157923637, c_knock_filterate=319187619, c_knock_checkscan=142152685, c_knock_core=141512559, c_land_filterate=31860412, c_land_checkscan=32029192, c_land_core=8, c_backscat_filterate=319187619, c_backscat_checkscan=112479244, c_backscat
core=112379773, c_addressscan_filterate=319187619, c_addressscan_checkscan=129392135, c_addressscan_core=129392135, check_scan_counter=@, worker_to_manager_counter=166156888, run_scan_detection=162623097, check_scan_cache=157923637, event_peer=<uninitialized>]
anager -

Sep 6 10:56:44 Reporter::INFO STATISTICS: [new_conn_counter=1480859856, is_catch_release_active=2136828989, known_scanners_counter=@8, not_scanner=1613624608, darknet_counter=98765405, not_darknet_counter=284885133, already_scanner_counter=39222520@, filteration_
ntry=08, filteration_success=167449708, c_knock_filterate=339574578, c_knock_checkscan=143378350, c_knock_core=142738304, c_land_filterate=33586555, c_land_checkscan=32029192, c_land_core=8, c_backscat_filterate=339574578, c_backscat_checkscan=113721971, c_backscat
core=113620789, c_addressscan_filterate=33957457@, c_addressscan_checkscan=130740532, c_addressscan_core=13@74@532, check_scan_counter=@, worker_to_manager_counter=167517758, run_scan_detection=163976115, check scan_cache=16744970@, event_peer=<uninitialized>]
anager -

Sep 6 11:56:48 Reporter::INFO STATISTICS: [new_conn_counter=14848182082, is_catch_release_active=2264804893, known_scanners_counter=8, not_scanner=1711407179, darknet_counter=183616981, not_darknet_counter=301121088, already_scanner_counter=4148963@4, filteration
entry=0, filteration_success=176718174, c_knock_filterate=359856781, c_knock_checkscan=144152905, c_knock_core=143512859, c_land_filterate=35152698, c_land_checkscan=32029192, c_land_core=0, c_backscat_filterate=359856781, c_backscat_checkscan=114498025, c_backsca
_core=114395821, c_addressscan_filterate=359856781, c_addressscan_checkscan=131615464, c_addressscan_core=131615464, check_scan_counter=@, worker_to_manager_counter=168418384, run_scan_detection=164860189, check_scan_cache=176718174, event_peer=<uninitialized>]

new_conn_counter 184,772,975 1,569,935,400 (100%)
is_catch_release_active 273578054 (148%) 2,382,883,254 (151.78%)
not_scanner 170877124 (92.47%) 797,378,521 (50.79%)
darknet_counter 62747298 (33.95%) 103,620,129 (6.60%)
not_darknet_counter 13601622 (7.36%) 320,578,718 (20.41%)
already_scanner_counter 79308450 (42.92%) 435,007,325 (27.70%)
filter_entry 58024703 (31.40%) 384,651,055 (24.5%)
filter_success 27135590 (14.68%) 185,705,196 (11.82%)
c_knock_filter 58024703 (31.40%) 384,651,055 (24.5%)
c_knock_checkscan 21936393 (11.87%) 151,338,638 (9.63%)
c_land_filter 21392978 (11.57%) 384,651,055 (24.5%)
c_land_checkscan 19848677 (10.74%) 32,029,192 (2.04%)
c_backscat_filter 58024703 (31.40%) 384,651,055 (24.5%)
c_backscat_checkscan 2005200 (1.08%) 121,802,144 (7.75%)
c_addressscan_filter 58024703 (31.40%) 384,651,055 (24.5%)
c_addressscan_checkscan 4510730 (2.44%) 139,784,051 (8.9%)
worker_to_manager_counter 27133670 (14.68%) 176,982,937 (11.27%)
freereer i"|
BERKELEY LAB
run_scan_detection 24965156 (13.51%) 173,071,224 (11.02%)

WORKERS

MANAGER

1.56 Billion Connections

Validation Layer

_——— —

KnockKnock_valdation
AddressScan_validation
Backscatter_validation

LandMine_validation

Heuristics Layer

Action

Layer

[KNOCK Address LandMine BackScatter
K A L B
RUN SCAN DETECTION
Yes

RUN SCAN DETECTION

> 5 >

check

KnockKN k.

check Check

Check

BackScatter

Scanner

l

| NetControl

3

catch-and-release taking over the subsequent blocking

[1
Broker-ACLD
ACLD

Catch-n-release|

=

A
freeeee "'|

BERKELEY LAB

Hyperloglog and state table memory

1400
)
u I | V]
g H distinct_peers_elements W c_distinct_peers_elements
- i
8 1200 :
] : B
S J—
= 1
.
0 -
Vv D 2 o 2 A Al S A A4 P ARSI o o M © AV o> X & A 5
L P & «”"4’9"6? %*\"’6‘"#"\“&'@'\“ g S A S PSR g AR T ST R Lt R I S AR A
PRI %”%”@%@#%“fb s %"9?"6‘6‘ *b‘b°‘%”%f”®°%“9"’%"9"’9"’%”6”%"’%“’9“%“‘“"’"q"%"%@faﬁ’*é\é‘&q""#q“’
@@@&&&&&@&&&&@@@@&&&@&&&&@@@&&&@&&&@&@@@@@@&&&&&&&&&&&
N3 D‘ \’b‘ N3 \?‘ \?n INag ,\’bn Ua ,\? ,\’bl b \?‘ ,\‘bl v \/D‘ N '\?‘ ,\/D Ny '\P‘ \/b‘ b V b< D‘ b< bl Na \b‘ ,\,D\ Na b; Ds b\ \?l D» bﬁ D \bn A ‘\?‘ ‘\P‘ .\,b Nb‘ INOEN SN AN \P‘

if (enable_big_tables)

1{
if { orig !in distinct_peers)
distinct_peers[orig] = set{) &mergeable;

if (resp !in distinct_peers[orig])
add distinct_peers[orig] [resp];

local n = |distinct_peers[origl |;

local address_scan_result = check_address_scan_thresholds{orig, resp, outbound, n);

if {orig !in c_distinct_peers)
{
local cp: opaque of cardinality = hll_cardinality_init{@.1, 8.99);

c_distinct_peers[origl=cp ;
¥

h1l_cardinality_add{c_distinct_peers[orig], resp); creeN
BERKELEY LAB

A
]

local d_wval = double_to_count{hll_cardinality estimate(c_distinct_peers[orig]))

hyperloglog instead of traditional sets

1400

W distinct_peers_size W c_distinct_peers_size

Millions

1200

1000

800

600

400

200

0 -
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

Gains of about 80% reduction in memory usage using hyperloglog in tables
for cardinality estimation

scan storage containers
global distinct_peers: table[addr] of set[addr]
&read_expire = 1 days &expire_func=scan_sum &redef;

global c_distinct_peers: table[addr] of opague of cardinality
&default = function{n: any): opaque of cardinality { return hll_cardinality_init({@.1, 0.99); } "

A
]

&read_expire = 1 day ; # &expire_func=scan_sum &redef; ;:;::qll
BERKELEY LAB

1461742286.588579
14617424@7.061258
1461742537.534465
1461742638.132537
1461742688.905063
14617427@8.918@83
1461742789.415944
14617428@9.472211
1461742849.798529
1461742880.188178
146174290@0.334705
1461742911.402014
1461742941.485399
1461742982.103@83
1461743@32.217585
1461743042.222850
1461743852.895237
1461743872.906497
1461743883 .004851
1461743104.143831
1461743154.634689
1461743174.644987
1461743225.865889
1461743225.865889
1461743246.154756
1461743297.142623
1461743297.142623

45.121.9.123
45.121.9.123
1.174.156.155
150.70.188.182
1.174.156.155
213.6.124.22
150.70.188.182
1.174.156.155
213.6.124.22
176.232.229.231
189.166.155.92
150.70.188.182
62.248.25.6
213.6.124.22
176.232.229.231
122.116.211.59
189.166.155.92
114.198.172.22
114.33.233.155
62.248.25.6
176.232.229.231
189.166.155.92
114.198.172.22
62.248.25.6
114.33.233.155
20@.158.92.183
75.99.152.163

Detection Latency

KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan

1461742074.132371
1461742074.132371
1461742477.573477
1461742577.691@97
1461742477.573477
1461742644.899279
1461742577.691097
1461742477.573477
1461742644.899279
1461742817.789336
1461742841.646816
1461742577.691097
1461742885.790328
1461742644.899279
1461742817.789336
1461742986.881469
1461742841.646816
1461743013.805050
1461743023.0828995
1461742885.790328
1461742817.789336
1461742841.646816
1461743013.8@5850@
1461742885.790328
1461743023.020995
1461743236.638197
1461743232.632175

1461742874.887315
1461742074.887315
1461742478.552456
1461742577.866958
1461742478.552456
1461742644.914583
1461742577.866958
1461742478.552456
1461742644.914583
1461742817.798187
1461742842.460690
1461742577.866958
1461742885.889194
1461742644.914583
1461742817.790107
1461742987.842975
1461742842.460690@
1461743813.817437
14617430823.508899
1461742885.889194
1461742817.790107
1461742842.460690
1461743813.817437
1461742885.889194
1461743023.508899
1461743237.562772
1461743233.383366

5.008498
6.009176
5.278427
6.009176
5.833851
5.278427
6.009176
5.8330851
5.821672
5.832686
5.278427
6.181757
5.833851
5.021672
5.962774
5.832686
5.0085081
5.0088528
6.1081757
5.821672
5.832686
5.0088581
6.181757
5.008528
6.988282
5.0088261

5.0088498

Detection Time

597
854

[

WMNULODUOOODEWWaSRSEWRBRONOGNBNMNE®REBERNWURN

256

NN
L
[+)]

MMNMMNMNMNMMMMNRNMNRMNAMNRMNBMNRMNRMNRLGRMNRMNWRNRDG WK

8.754944
8.754944
@8.978979
8.175861
©.978979
8.815224
8.175861
@8.978979
@.815224
8.00808771
8.813874
8.175861
@.808866
8.815224
8.0080771
8.961586
8.813874
8.812387
8.487984
0.098866
2.000771
8.813874
8.812387
0.098866
8.487904
@8.932575
B8.751191

Avg. time
between
connections

9.802949
0.002949
9.489489
2.28793 IP
8.326326
8.8@7612
8.B8793 1P
8.326326
B.007612
0.0008386
0.406937
8.88793 1P
@.849433
8.8@7612
0.000386
9.480753
9.406937
9.806194
0.243952
9.049433
2.P00386
8.406937
9.806194
0.0849433
8.243952
@.466287
©8.375596

frreeeer |I/ﬂ

BERKELEY LAB

Increasing detection speed

 Problem

— all events use conn expiration timers as in the
table

conn_expiration_timer Interval Description
tcp_SYN_timeout 5.0 secs Check up on the result of an initial SYN after this much time.
tcp_attempt_delay 5.0 secs Wait this long upon seeing an initial SYN before timing out the connection attempt.
tcp_close_delay 5.0 secs Upon seeing a normal connection close, flush state after this much time.
tcp_connection_linger 5.0 secs When checking a closed connection for further activity, consider it inactive if there

(n’t been any for this long. Complain if the connection is reused before this much
time (elapsed.

* This basically means that all events trigger
after 5.0 secs of actual activity on the wire

Solution: speed up detection

speed up landmine and knockknock for darknet space
event new_connection(c: connection)

* Not changing {

we just want to supply c to check only for darknet spaces

expiration timers : # to speed up reaction time and to avoid tcp_expire_delays of 5.9 sec issue
— . local tp = get_port_transport_proto(cidresp_p);
V4
haven t StUd Ied }f (tp == tcp && c$idsorig_h !in Site::local_nets && is_darknet(cidresp_h))
the effect — Could . Scan::check_scan(c, F, F);
}

be drastic

e |everage on “insider-information” - We know our
darknet/unallocated spaces

* Use new_connection event and fast-track the
connections going to darknet to scan-detection module
instead of waiting for other events to kick in post
timer-expirations

Faster detection

60.251.100.116 Scan::DETECT KnockKnockScan 1464854818.526877 1464854818.544769 1464854818.544769 08.817892 = =) ©.817892 ©.8085964
116.252.17@.147 Scan::DETECT KnockKnockScan 1464856827.246515 1464856027, 325838 1464856027, 325838 9.079323 3 3 8.079323 @.026441
116.1.214.122 Scan::DETECT KnockKnockScan 1464856827.877345 1464856027, 325838 1464856027, 325838 9.248493 3 3 8.248403 @.082831
123.56.132.202 Scan::DETECT KnockKnockScan 1464858493.742455 1464858494.130484 1464858494.130484 @.388029 3 3 @.388029 ©.129343
120.33.204.25¢ Scan::DETECT KnockKnockScan 1464858500.865612 1464858510. 295089 1464858518, 295089 9.429477 3 3 8.429477 @.143159
218.7.204.149 Scan::DETECT KnockKnockScan 1464859892.686279 1464859892, 767807 1464850892, 767887 9.081528 3 3 8.081528 @.027176
101.201.243.213 Scan: :DETECT BackscatterSeen 1464859912.388@75 1464859912.866777 1464859912. 866777 @.478702 1@ 1 @.478702 ©.04787 CN
106.91.201.133 Scan::DETECT KnockKnockScan 1464861111.809664 1464861111.347888 1464861111.34788@ @.338216 3 =) ©.338216 ©8.112739
171.88.164.182 Scan::DETECT KnockKnockScan 1464861968.598142 1464861969, 148787 1464861969, 148787 8.550645 3 3 8.550645 @.183548
95.9.138.198 Scan::DETECT KnockKnockScan 1464862390.287287 1464862390. 868363 1464862398, 868363 9.581076 15 : 8.581076 @.038738
49.68.65.177 Scan: :DETECT KnockKnockScan 1464863185.554896 1464863185.694704 1464863185.694704 @.139808 3 3 @.139888 ©.046683
. . Avg. time
Detection Time g

between

connections
ts scanner state detection start_ts detect_ts detect_latency total_conn total_hosts_scanned duration scan_rate
1464900975.699798 203.193.173.41 Scan::DETECT KnockKnockScan 1464900842.468613 1464900975.699798 1464900975.699798 133.231185 3
3 133.231185 44.410395 IN - 20.0 77.0 0.0 manager
CONN.LOG
1464900842.468613 CUXzwp1lvSPtEpsxzES 203.193.173.41 2631 128.3.86.149 tcp SO F T S 48 O 0 worker-2
1464900933.227438 CCuvnu2NMu6bMXe70i8 203.193.173.41 3242 128.3.5.165 tcp SO F T S 48 O 0 worker-15
1464900970.708817 CcWrUM1SaCoDPquwo5 203.193.173.41 3757 131.243.46.136 tcp SO F T S 48 O 0 worker-7

frreeeer rﬂ

BERKELEY LAB

Whitelist Mgmt

IP and Subnet based whitelist
Clusterized

Self-cleaning

— when IP or subnet is added to the whitelist bro purges it
from the scan tables *and*

— removes the nullzero blocks using netcontrol/acld

Saves restarts

— saves problem of many IPs from a subnet being blocked
and we removed only one (facebook example)

Sep
Sep
Sep
Sep
Sep

Ll

3:45 776032 108.61.123.72 NetControl::DROP 3600. 000000 36000. 000000
3:45 776032 108.61.123.72 NetControl::DROPPED 3600
5:18 776032 108.61.123.72 NetControl::INFO 3600
3:46 776032 108.61.123.72 NetControl::UNBLOCK 3600 0

5:48 780727 108.61.123.72 NetControl::SEEN_AGAIN 36000.000000 86400. llll@l
5:48 780727 108.61.123.72 NetControl::UNBLOCK 36000. 000000 86400. 000000

[i

Whitelist in action

1473416025.833145 Scan::KnockKnockScan 108.61.123.72 scanned a total of 12 hosts:
[80/tcp] (port-flux-density: 6) (origin: FR distance: 5528.29 miles) - 108.61.123.72 --
manager Notice::ACTION_DROP,Notice::ACTION_LOG 60.000000 F -

Block is removed due to catch-n-release timer expiration kicking in ...

1473419748.634896 Scan::WebCrawler 108.61.123.72 crawler is seen: yacybot
(/global; amd64 FreeBSD 10.3-RELEASE-p7; java 1.8.0_92; GMT/en) http://yacy.net/bot.html -
108.61.123.72 worker-11 Notice::ACTION_LOG

1473419748.634896 Scan::PurgeOnWhitelist 108.61.123.72 is removed from
known_scanners after whitelist: [scanner=108.61.123.72, status=T, detection=KnockKnockScan,
detect_ts=1473416025.886353, event_peer=worker-11, expire=F] 108.61.123.72 worker-11
Notice::ACTION_LOG 3600.000000 F

Already blocked using catch-and-release - ignoring duplicate

108.61.123.72 is removed from known_scanners after whitelist: |

NN

e removes from known_scanners

e removes from catch-n-release hell
e removes ACLD blocks on the router, if any)\In

BERKELEY LAB

HotSubnets

- Often scanners can origin from the same
subnet - ie identify bad neighborhoods
- Subnet-escalation advice and capabilities

- Scan::HotSubnet 41.67.117.0/24

1473148542.@91330
1473157363.4@7512
1473157406.837344
1473157406.837344
1473157789.7@3106
1473169192.007087
1473183220.677926
1473196818.669538
1473202572.927443
1473204092.503435
1473206860.829055
1473206860.829055

originating)

Scan: :KnockKnockScan
Scan: :KnockKnock5can
Scan: :KnockKnockScan

41.67.117.2@ scanned a total of 3 hosts: [2323/tcp] (port-flux-density: 6) (origin: EG distance: 7389.16 miles)
41.67.117.42 scanned a total of 3 hosts: [2323/tcp]l (port-flux-density: 6) (origin: EG distance: 7389.16 miles)
41.67.117.171 scanned a total of 3 hosts: [2323/tcpl (port-flux-density: &) (origin: EG distance: 7379.8@ miles)

Scan: :HotSubnet 41.67.117.8/24 has 3 scanners origipating from it

Scan: :KnockKnock5can
Scan: :KnockKnockScan
Scan: :KnockKnockScan
Scan: :KnockKnock5can
Scan: :KnockKnockScan
Scan: :KnockKnockScan
Scan: :KnockKnock5can

41.67.117.52 scanned a total of 3 hosts: [2323/tcp]l (port-flux-density: 6) (origin: EG distance: 7387.13 miles)
41.67.117.15 scanned a total of 3 hosts: [2323/tcp]l (port-flux-density: &) (origin: EG distance: 7389.16 miles)
41.67.117.248 scanned a total of 3 hosts: [2323/tcp]l (port-flux-density: 6) (origin: EG distance: 7389.16 miles)
41.67.117.138 scanned a total of 3 hosts: [2323/tcpl (port-flux-density: 6) (origin: EG distance: 7392.82 miles)
41.67.117.93 scanned a total of 3 hosts: [2323/tcp]l (port-flux-density: &) (origin: EG distance: 7389.16 miles)
41.67.117.143 scanned a total of 3 hosts: [2323/tcpl (port-flux-density: 6) (origin: EG distance: 7389.16 miles)
41.67.117.57 scanned a total of 3 hosts: [2323/tcp]l (port-flux-density: 6) (origin: EG distance: 7393.71 miles)

Scan: :HotSubnet 41.67.117.8/24 has 1@ scanners originating from it

(10 scanners

frreeeer |ﬂ

BERKELEY LAB

notice.log: Scan::HotSubnets

S.no Uniq scanners in /24 How many such /24

1 3 55634
2 10 4141
3 25 913
4 100 53

5 200 8

HotSubnet /24 with > 200 scanners

S.no

ASN

262355

262355

262355

262355

50676

6461

9808

42570

Subnet

177.125.216.0 /24

177.125.217.0 /24

177.125.218.0 /24

177.125.219.0/24

91.236.204.0/24

64.125.239.0/24

112.5.236.0/24

185.35.62.0/24

Owner

VESX Networks, BR

VESX Networks, BR

VESX Networks, BR

VESX Networks, BR

TELCOMNET , RU

ZAYO-6461 - Zayo Bandwidth Inc, US

CMNET-GD Guangdong Mobile Communication Co.Ltd., CN

KS-ASN1 This ASN is used for Internet security research. Internet-scale port

scanning activities are launched from it. Don_t hesitate to contact
portscan@nagra.com would you have any question., CH

frreeeer |ﬂ

BERKELEY LAB

SF to Scanner

May 8 08:08:35 Scan::KnockKnockScan 112.74.135.36 scanned a total of 3 hosts: [21/tcp]
(port-flux-density: 6) (origin: CN distance: 0.00 miles) on 128.3.28.64 128.3.20.30 128.3.28.110 112.74.135.36
manager Notice::ACTION_LOG,Notice::ACTION_DROP 3600.000000 F

May 8 08:08:35 History::SF_to_Scanner outgoing SF to scanner 112.74.135.36 112.74.135.36
Notice::ACTION_LOG

Conn.log :

May 803:49:46 112.74.135.36 61291 128.3.28.110 21 tcp 3.059543 0 0
May 8 03:49:55 112.74.135.36 61291 128.3.28.110 21 tcp SO

May 8 03:49:46 128.3.28.110 3 112.74.135.36 10 icmp 9.073815 152 0
May 803:51:23 131.243.2.64 20 112.74.135.36 56755 tcp 0.789239 520 O
May 803:51:26 131.243.2.64 20 112.74.135.36 57266 tcp 0.656309 0 O
May 8 03:51:29 131.243.2.64 20 112.74.135.36 57735 tcp 0.672116 0 O
May 803:51:31 131.243.2.64 20 112.74.135.36 58196 tcp 0.381356 0 O
May 803:51:34 131.243.2.64 20 112.74.135.36 58595 tcp 0.722489 0 O
May 803:51:37 131.243.2.64 20 112.74.135.36 59047 tcp 0.378877 0 O
May 803:51:40 131.243.2.64 20 112.74.135.36 59431 tcp 0.543354 0 0
May 8 03:51:46 131.243.2.64 20 112.74.135.36 60295 tcp 0.569139 0 0
May 803:51:48 131.243.2.64 20 112.74.135.36 60692 tcp 0.783772 0 O

BERKELEY LAB

Implementation

event connection_established(c: connection) &priority=-5

{
local src = cidorig_h;
local dst = cidresp_h; global tcp_outgoing_SF : opaque of bloomfilter ;
ignare remote originating connections global tcp_conn_duration_bloom : opaque of bloomfilter ;
if (src !in Site::local_nets)
FEEURN’ ;
if (c$respSstate == TCP_ESTABLISHED) ?vent connection_state_remove(c: connection) &priority=-5
{ . ‘
. local src = cidorig_h;
) add_to_bloom(dst) ; local dst = cidresp_h;
ignore remote originating connections
} if (src !in Site::local_nets)

return ;

only worry about TCP connections

we deal with udp and icmp scanners differently

if (c$conn$proto == udp || c$conn$proto == icmp)
return ;

if (c$duration > 60 secs)

{
b

bloomfilter_add(tcp_conn_duration_bloom, src);

function check_conn_history(ip: addr): bool

{

local result = F ;

local seen = bloomfilter_lookup(History::tcp_outgoing_SF, ip);

if (seen == 1)

{

frreeeer |I/ﬂ

NOTICE([$note=History::SF_to_Scanner, $src=ip,
Cmen=Ffmt({"nutnninn SF +n <crannar %c! in) BERKELEY LAB

ldentifying Legitimate Scanners

 Web crawlers, spiders, search engine
indexers

* Yes, we’'d like to be top hit on google

* Automatically identify web-crawlers and not
flag them as scanners

Dynamic Thresholds

* High and medium threshold ports

* port flux density - basically a popularity
function of a given port - less popular ==
higher threshold

Sep 5 23:13:10 Scan::KnockKnockScan 131.117.245.15 scanned a total of 12 hosts:
[4028/tcp] (port-flux-density: 2) (origin: IQ distance: 7482.10 miles)

Sep 5 23:13:15 Scan::KnockKnockScan 124.106.53.200 scanned a total of 5 hosts:
[4028/tcp] (port-flux-density: 3) (origin: PH distance: 6999.04 miles)

Sep 5 23:48:19 Scan::KnockKnockScan 125.26.23.65 scanned a total of 3 hosts:
[4028/tcp] (port-flux-density: 6) (origin: TH distance: 7855.57 miles)

identify-search-engines
Tap into http_request and http_header events

event http_request(c: connection, method: string, original _URI: string, unescaped_URI: string, version: string) &priority=3

{
if (ok_robots in original_URI)
{
local orig=cidorig_h ;
if (orig !in Scan::whitelist_ip_table)
local _msg = fmt("web-spider seeking %s'", original _URI) ;
NOTICE([$note=WebCrawler, $src=orig, $msg=fmt("%s", _msg)]l);
event Scan::m_w_add_ip(orig, _msg);
+
b
}

event http_header(c: connection, is_orig: bool, name: string, value: string) &priority=2

{
if (name == "USER-AGENT" && ok _web_bots in value)

{
local orig=cidorig_h ;
if (orig !'in Scan::whitelist_ip_table)

{
local _msg = fmt ("%s crawler is seen: %s", orig, value);
NOTICE([$note=WebCrawler, $src=orig, $msg=fmt("%s", _msg)]);
event Scan::m_w_add_ip(orig, _msg) ;

+

is ts

1473359945,
1473363593,
1473367203.
147337e810.
1473374478.
1473378082,
1473381682.
1473385286.
1473388954.
1473392561,
1473396163.

scanner s

139915
103833
264704
158499
860150
058692
034921
614574
013977
887521
027289

tate detection
56 222.141 Scan::DETECT
’.141 Scan::UPDATE

41 Scan::UPDATE

11 Scan::UPDATE
141 Scan::UPDATE
1 Scan::UPDATE
41 Scan::UPDATE
41 Scan::UPDATE
141 Scan::UPDATE
11 Scan::UPDATE
11 Scan::UPDATE

start_ts

Scan-Summary

end_ts
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan
KnockKnockScan

Provides summary of
when scan started,

@)
o
@)
@)
@)
o

o

when it ended,

when was it detected
how many connections were made by the scanner

how many uniq hosts did it touch

latency of detection
total duration of the scan
Clusterized
Memory efficient - relies on opaque of cardinality
Incremental scan-summary for the lifetime of the scanner

détect_ts

1473358239,
1473358867,
1473358867,
1473358867.
1473358867,
1473358867,
1473358867,
1473358867.
1473358867,
1473358867,
1473358867,

detect_latency total_conn
1473359945.
1473363390,
1473363390.
1473368822.
1473373753.
1473376018.
1473380475,
1473384956.
1473386313,
1473390439,
1473394830.

225943
823400
823400
823400
823400
823400
823400
823400
823400
823400
823400

139915
585865
585065
682992
229130
250225
182069
895426
906947
869610
983372

total_hosts_scanned
1473359945.
1473359945,
1473359945,
1473359945.
1473359945,
1473359945,
1473359945,
1473359945.
1473359945,
1473359945,
1473359945,

139915
139915
139915
139915
139915
139915
139915
139915
139915
139915
139915

duration

17@5.
1077.
1077.
1077.
.316515

1077

1077.
1077.
1077.
1077.
1077.
1077.

913972
316515
316515
316515

316515
316515
316515
316515
316515
316515

scan_rate

3 2

23 23
23 23
48 44
76 69
86 79
1e8 96
133 117
144 128
172 154
192 17@

country_code
1705.913972
4522.761665
4522.761665
9954.859592

14885.
17150.
216@7.
26088.
27446.
31572.
35963.

405730
426825
358669
272026
883547
846210
159972

region city distance
568.637991 us
196.641812 us
196.641812 us
226.2468089 us
215.730518 us
217.09401 us
225,076653 us
222.976684 us
214.422528 us
205.013287 us
211.548 US (empty) (emp

(emp'
(emp’
(emp’
(emp'
(emp'
(emp’
(emp’
(emp
(emp'
(emp'

frreeeer |I/ﬂ

BERKELEY LAB

Scan-Summary Architecture

Conn_table

10 mins - keep building
state for ALL connections

expire

\

check if known_scanner

60\Mins ves

A\

Populate Scan_summary on worker

l

keep updating counts on workers

l

manager_update_scan_summary

Blocking speed

Bro

Broker

bro network_time()
Jusr/iocai/ :\;0/|0g5/current/notice.log

1473400423.893674 Detection Time

Jusr/local/bro/logs/broker-acld-logs/broker.log
1473400424.110827:brokerlisten:INFO:G

| ACLD

- Broker: Netcontrol acld_add_rule

1473400424.111010:brokerlisten:IN FO:Sending to ACLD:
system_time()
1473400424)111826:brokertiste Broker: sending to ACLD:

/syslog/acld.lo

acld: NE¥FS— Broker: Sending to BRO:
cts=1473400424.109791

Y

Quagga

Y

Routers

800 us

ats=1473400424.109729

ACLD: Arrival timestamp

ACLD: Completion timestamp ~_ —— system_time()

frreeeer |ﬂ

BERKELEY LAB

timestamp

1473663871.195220
1473663871.195220
1473663871.226191

1473663871.226378

1473663871.226359

1473663871.226420

1473663871.227030

drop times

Action
Scan::KnockKnockScan
NetControl::REQUESTED
Brokerlisten: Got event

brokerlisten:INFO:Sending
to ACLD

ACLD Arrival timestamp

ACLD Complete
Timestamp

brokerlisten:INFO:Received
from ACLD

Delta (t_-t)
t=0s

t=0s

30.9 ms

187 us

-0.19 us

61 us

610 ps

Source
notice.log
netcontrol.log
broker.log

broker.log

acld.log

acld.log

broker.log

frreeeer |ﬂ

BERKELEY LAB

Table of Known Services

Usability

Plug-n-play

Works with netcontrol-framework

All configuration knobs moved to one single file
Accompanying whitelist allows for addressing
false-positives in real-time

No need to restart Bro

Dynamic thresholds and post-detection vetting
reduces false positives significantly

GeolP inclusion in blocking threshold heuristics

files and description

check-scan.bro first file which taps into events and calls function check-scan

check-scan-impl functions which enables clusterization

scan-config ALL user configuration settings are redef variables centrally
located here. No need to go into any other policy to tweak

scan-base important core functions — | can actually move a bunch of
functions from check-scan and check-scan-impl here but will
wait

scan-summary add-on code which generates scan_summary.log (pretty good
log actually)

check-* heuristics for knockknock, landmine, addressScan, BackScatter

etc. All files are basically — 2 or 3 functions — validate_*,
check-*, check-thresholds (this name varies)

— scan-* additional supporting scripts for input data, whitelists,
host-profiling data, subnet-info for landmine etc etc

Reliability

What if subnets file is Empty or incomplete
— accuracy of functions like - is_darknet or
is_scanner or validation_func for heuristics

Typose in the whitelist entry
— catch reporter_error for all input files

co-ordination with netcontrol
— Any Bro shall not unblock what it did not block

Memory and CPU on Manager

Pass Fail Criteria

Not miss anything existing infrastructure flags
— More accurate than existing policy

Find more badness

Speed

Practical False +ve rate

Pass peer review

Bro runs stable for > 1 month

Key to success is to be able to count failures
correctly

We should know what they know

users/developers/bro people

Users

notice.log and
scan-summary.log

memory efficient

whitelist capability/ Dynamic
darknets and configs on fly

stable code

plug & play

speed & accuracy

Developers

access to known_scanners
table

use of hyperloglog and
bloom-filters

input-framework + tap into
reporter_error event

extendable and modular

clusterization insights

you can fix scan.bro

Bro People

how to make table persistent

hard to find data-structure
sizes/usage

dealing failures in input-files
due to lame typos

Manager CPU is mystery

ability to account of w2m and
m2w events

Should scan-detection be in

C++ land instead of policy land
?

freeeeer I/ﬂ

BERKELEY LAB

Must and Should Requirement checklist -
Accuracy off or feature list of scan detection
Reaction
— Must block really fast scanners J
— Must block really slow scanners

Smart ACL mgmt - keep scanners blocked only until active - no unnecessary acl
consumption

State manageme
Block sooner if they §pme back (catch-n-release)
Very very long state management (bloom filters) ‘/

Variety - Should be able to Block based on different gvents (AddressScan, PortScan,
deep block, vuln-signature - ntp monlist or data feAs such as tor)

Should be able to Handle redundancy in infrastructure - ie avoid race conditions in
blocking and unblocking independently j

— Atomicity in blocking and unblocking
— Accountability in blocking and unbloc‘I{ng
Whitelisting mechanism

Outsmart attackers over attackers so that they cannot easily guess/defeat block
thresholds (Dynamic thresholds)

v
v

Must and Should Requirement checklist -
w4 aka feature list of scan detection

Ability to add new heuristics very quickly \/

Identify and Remove false positives quickly and suppress them in future ‘/
— .gov, US .edu or foreign .edu etc

Optimize ACLs, don’t block what's already blocked somewhere else

— eg. icmp timestamp query is blocked on border router so no need t(block those
offending IP’s any more or port 135, 137, 445 scanners

Do not block what’s blocked by the border router
Watchdog processes to account for functionality /
— alert if too many failures on blocking
— alert if too many success on blocking J
— alert if rate of blocking changes etc etc
Verification capabilities

— are blocking working as expected. Router ACLs are functional - violations of policies
should alert (hey | am sszfing SFon 445)

Prioritize a list of ports/IPs/nets to be aggressively blocked
Careful and slow in blocking a certain set
Mechanisms to handle established connection?Sanners/bruteforcers (RDP, SSH)

v

what does it not do

Smart Defenses against spoofing udp x

Persistence - restarts should not matter

Dynamic responses based on situation - eg. Change from acld to nullzero on thresholds p 4
Expire blocks based on priorities (icmp sooner than ssh for example)

If possible figure out intentions why this scan specifically X

Who responded and why and what they sent? X

Highlight new trends b~ 4

Big limitation - this is on Y€ CP

X

Availability

https://github.com/initconf/scan-NG/

Or
use bro-pkg install initconf/scan-NG

Alternatively, try Justin Azoff’s unified-scan
policy which is significant improvement over
stock misc/scan.bro

Questions and comments

security@Ibl.gov

asharma@Ibl.gov

