
Notice Correlation and Covert-Timing
Channels

Michael Dopheide & Ross Gegan
ESnet
Lawrence Berkeley National Laboratory

BroCon
Austin, TX
Sept, 13, 2016

Table of Contents

9/23/162

Introduction
Something Important
Part 1: Multi-Notice Correlation
Part 2: Covert-Timing-Channels (CTC)

Dop Introduction

• Almost 10 Years at NCSA
– Started in systems engineering and transitioned to operational security

• 3.5 years doing penetration testing for a major bank
– Interesting for a little while…

• Joined ESnet in February 2015.

9/23/163

Illustration by Nick Buraglio

Pyramids*

9/23/164

*Triangles

Actual Pyramids

9/23/165

Pyramid Limitations

9/23/166

Pyramid Fail

9/23/167

Pyramids are hard to rebuild

9/23/168

Trapezoidal Prism*

9/23/169

*Mayan Pyramid

Trapezoidal Prism

9/23/1610

Added Benefits

9/23/1611

Part 1: Multi-Notice Correlation

9/23/1612

Given

• Bro ships with a lot of common policies
• Many more available from the community
• Policies should (must) be tuned to the specifics of your network

Problem Statement

With a new job and no knowledge of what normal looks like, how can I
have a quick impact on ability to detect and block bad actors? How can
I speed up the tuning of built-in and custom policies?

Start with Password Guessing and Intel

9/23/1613

SSH::Password_Guessing

I couldn’t simply turn on blocking because I didn’t know what our user
community habits were.

Intel::Notice

Intel feeds come with varying levels of confidence – can’t block an IP
just because it’s in Intel.
• Using primarily both CriticalStack and REN-ISAC feeds
• ~100,000 indicators

However, if we can keep track of source IPs that flag both, that’s
something we can block!

The Basic Flow

9/23/1614

global watch_hosts: table[addr] of table[Notice::Type] of
count &write_expire = 120 min &synchronized;

The Basic Flow

9/23/1615

Define new notice types and define which types you want to block or alert on:

redef enum Notice::Type += {
Multi::Multi_Notice,
Multi::Multi_Notice_AutoBlock,
Multi::Multi_Notice_AutoBlockAlarm,
Multi::Single_Notice_Threshold,
Multi::Single_Notice_Threshold_Block

};

global multi_notice_types: set[Notice::Type] = {
SSH::Password_Guessing,
Bash::HTTP_Header_Attack

} &redef;

The Basic Flow

9/23/1616

hook Notice::policy(n: Notice::Info)
{

if(n$note in multi_notice_types){
if(n?$conn){

watch_host(n$conn$id$orig_h,n);
}else{

watch_host(n$src,n);
}

}
}

event Intel::log_intel(rec: Intel::Info){
any Intel hit, add to watch list.
local wn = Notice::Info($note=Intel::Notice);
watch_host(recidorig_h,wn);

}

Notice Log Entry

9/23/1617

1471667754.084883 - - - - - - - -- Multi::Multi_Notice_AutoBlock
Host triggered multi-notice correlation Intel::Notice:24__SSH::Password_Guessing:1
11.22.33.44 - - -lbl-worker-1-4
Notice::ACTION_LOG,BHR::ACTION_BHR,Notice::ACTION_ALARM 3600.000000 F -
- - - - - -

Intel::Notice:24__SSH::Password_Guessing:1

• We saw this host via Intel 24 times and when the first password
guessing notice hit we blocked it.

• The higher Intel count is just a result of the password guessing
thresholds.

SSH::Password_Guessing

9/23/1618

For sources not already blocked, in July 2016:

41 Unique IPs found SSH password guessing
12 of those in Intel

Immediate Lessons:
• Allows us to block some bad actors while getting comfortable
• Intel feeds only go so far (at least ours)
• Perhaps we can adjust our thresholds

This led to…

SSH::Foreign_Threshold_Block

9/23/1619

Modified SSH::Password_Guessing to be more aggressive for non-U.S.
sources.

July 2016:
139 Non-U.S. IPs found and auto-blocked

60 in Intel

The reason we see many more IPs than the original 41 is because of
lower thresholds.

DNS examples

9/23/1620

• DNS::Request_Threshold
• ESnet’s DNS resolvers were getting hammered
• Set thresholds to throw a notice
• We can never really auto-block on just this notice as there are

lots of reasons to legitimately make DNS requests at the
thresholds we have set.

• DNS::Possible_Weird_CVE_2015_7547_Attack
• Rough policy to detect DNS DoS that results in a lot of false

positives.

DNS examples

9/23/1621

When combined with Intel, DNS::Request_Threshold blocked 13
unique hosts in June 2016.

More interesting however, was the following:

1465974656.496484 Multi::Multi_Notice_AutoBlock
DNS::Possible_Weird_CVE_2015_7547_Attack:1__DNS::Reque

st_Threshold:1

No Intel involved… this is a great example of two non-perfect policies
combining to confidently block some potentially bad activity. The
offending host in this case was in the Netherlands.

Notice Correlation without Intel: DDoS

9/23/1622

ESnet was the target of some minor SYN flooding DDoS attacks. The
result was two policies with different thresholds, the second allowing for
more SYNs, but over a longer span of time.

19 : DDoS::SYN_DDoS_Attempt only
4 : DDoS::SYN2_DDoS_Attempt only
4 : Tripped both

The four that tripped both thresholds were sending SYNs so fast that
they hit the higher threshold in the smaller time window.

To answer the question, “Are there hosts hitting both policies?”
• Could have done this correlation by hand
• Instead, added both notice types to multi_notice_types

• In fact, we did this before the question was asked.

Single Notice Threshold

9/23/1623

1465303777.308319 - - - - - - - --
Multi::Single_Notice_Threshold_Block Crossed block

threshold of 10 for HTTP::HTTP_SensitiveURI -
80.98.206.222- - - lbl-worker-1-6
Notice::ACTION_LOG,Notice::ACTION_ALARM,BHR::ACTION_BH

R 3600.000000 F - - - - - - -

This gives us a way to track repeat offenders before blocking.

Not as well tested feature…

9/23/1624

• Support for correlation with Notice Types that won’t block automatically
• Unless the number of unique notice types is over the threshold, then

block.

global multi_non_block_thres: count = 3 &redef;
global multi_notice_non_block_types: set[Notice::Type] = {

SSH::Success
} &redef;

For example:
Will NOT Block: Intel::Notice and SSH::Success

But with threshold 3:
Will Block: Intel::Notice, SSH::Success, and DNS::Request_Threshold

For a whitelisted scanner…

9/23/1625

1469048610.980754 CQ4hxs4dNbZQnufXWe 11.22.33.44 56666
55.66.77.88 80 - - - tcp Multi::Multi_Notice_AutoBlockAlarm
Host triggered multi-notice correlation
DDoS::HTTP_DDoS_HEAD_Attempt:1__DDoS::HTTP_DDoS_Attempt:1__HTTP::HTT

PSensitivePOST:822__Bash::HTTP_Header_Attack:3770 11.22.33.44
55.66.77.88 80 - lbl-worker-1-12
Notice::ACTION_ALARM,Notice::ACTION_LOG,BHR::ACTION_BHR
3600.000000 F - - - - - - -

DDoS::HTTP_DDoS_HEAD_Attempt:1
DDoS::HTTP_DDoS_Attempt:1
HTTP::HTTPSensitivePOST:822
Bash::HTTP_Header_Attack:3770

Part 1 : Notice Correlation Wrap-up

9/23/1626

• Easy win for your new job
• Great for testing out new, not-so-perfect policies

Code:
https://github.com/dopheide/bro_notice_correlation

Blog Post:
http://blog.samoehlert.com/correlating-bro-notices

Part 2: Convert Timing Channels

1) Introduction
2)Covert Timing Channels (CTCs)

3)Detection techniques
4)Bro Policies

5)Detection Implementation

6)Conclusions and Future Work

9/23/1627

Ross Introduction

• UC Davis graduate student.
• Interning at ESnet.

– Project: Detecting covert timing channels using Bro.

9/23/1628

What are Covert Timing Channels?

9/23/1629

Covert Timing Channels

Ø Network Covert Timing Channels
encode data in the inter-packet
delays (IPDs)

Ø Allows hidden communication using
authorized channels

Ø Can be used for malicious purposes

9/23/1630

Covert Timing Channels

All traffic is going to have some randomness in the delays between each packet

In this example, Bob is sending standard business traffic to Alice. Nothing out of
the ordinary.

9/23/1631

Covert Timing Channels

However, if Bob (or an attacker with appropriate access) is able to manipulate the
IPDs beyond normal randomness….

The IPDs can be used to send data along with the normal traffic. Now an outside
accomplice, anywhere on the network path, can received the covert data. The
corporate IDS likely won’t notice any difference.

9/23/1632

Types of Covert Timing Channels [5]

Active Channels
Ø IPCTC

Ø Model-Based CTC (MBCTC)
Ø Time-Replay CTC (TRCTC)

Passive Channels
Ø Jitterbug

9/23/1633 Image: S. Gianvecchio and H. Wang. [5]

Covert Timing Channel Mitigation

9/23/1634

Disrupting Covert Timing Channels [7][8]

Ø Goal: Eliminate the covert channel or
reduce channel bandwidth.

Ø Add noise to a process’s timing
information. (Ex: fuzzy time
technique)

Ø Can hurt legitimate traffic
performance, especially for
applications such as VoIP.

9/23/1635 Image: Network Pump [8]

Detecting Covert Timing Channels

Ø Use Bro to identify potential CTC
flows, then report and selectively
disrupt.
Ø Focus as much as possible on Bro

to maintain portability of code with
low barrier to entry for other
organizations

Ø Monitor the incoming traffic’s inter-
packet delays (IPDs).

Ø Compare the IPD distribution with
expected values for legitimate traffic.

9/23/1636

Types of Detection Tests

• Shape Tests
– Measures the first-order statistics

• Ex: Shannon Entropy

• Regularity Tests
– Measures second-order and higher statistics

• Ex: Corrected-Conditional Entropy

9/23/1637

Common Detection Tests [1][5]

• Shannon Entropy (EN)
• Corrected-Conditional Entropy (CCE)

• Kullback-Liebler Divergence (KLD)
• Kolmogorov-Smirnov Test (KST)

9/23/1638 Source: model-based detection [5]

IPCTC TRCTC Jitterbug MBC
TC

EN Good Poor Good Fair
CCE Good Good Poor Good
KLD Good Poor Poor Poor
KST Good Poor Poor Poor

Detection Test Implementation

9/23/1639

Training Data

• Record legitimate IPDs using Bro
• Ex: 200,000 HTTP IPDs, 75,000 SSH

IPDs
• Used to create a 5-bin histogram

representing the expected traffic
distribution.

• IPDs are sorted, then divided into 5
equally sized group.

• Cutoff values determining bin ranges.

• Use different bins for each
application for best results.

9/23/1640 Source: model-based detection

Bro Policy Script

1. Check if a flow’s size is large enough
to test.

2. If so, add it to a table of flows.
3. For each new packet in those flows,
get the IPD and assign a bin value
between 1 and 5.
4. Once a flow has 2000 IPDs, perform
the detection tests using the bin
distribution.

5. Record the results in a log file.

9/23/1641

Creating Sample CTCs

• IPCTC, TRCTC, and Jitterbug
channels were created using Expect
scripts to automate SSH keystrokes.

• For MBCTC, actual traffic traces
injected with CTCs were used.

• Additional CTCs planned – iTRCTC,
Liquid, Mimic.

9/23/1642

IPCTC Script

• IPCTC = Basic ON/OFF channel
• Script connects to receiver using

SSH, and sends a sequence of bits.
• To send 1-bit, keystroke is generated

during a 100ms interval.

• To send 0-bit, no keystroke is
generated during the interval.

9/23/1643

TRCTC Script

• TRCTC mimics legitimate traffic by
replaying from two recorded IPD
sets.

• Recorded SSH IPDs on development
system using a Bro script.

• To send a 0-bit, replay from the set of
IPDs below a given time threshold.

• To send a 1-bit, replay from the set of
IPDs above a given time threshold.

9/23/1644

Jitterbug Script

• Jitterbug adds small delays to each
keystroke to embed CTCs.

• To send a 1-bit, IPD modulo W != 0.
• To send a 0-bit, IPD modulo W = 0.

• Expect script uses W = 20ms, sends
keystrokes with IPDs either multiples
of 10 or 20.

9/23/1645

MBCTC Samples

• Traffic recorded on OC-192 link in
San Jose. [12]

• 10% of large flows were replaced
with MBCTCs flows.

• Channel embedded using
exponential or pareto distributions.

• Replay the capture using tcpreplay.
[11]

9/23/1646

Detection Results

• CTCs were created using SSH and
HTTP.

• Average entropy scores for CTC
flows are lower than legitimate flows.

• Larger distances from expected
distributions => Larger KST and KLD
scores.

9/23/16 Table: SSH channel scores, bold indicates successful detection47

Average
Scores

EN CCE KST KLD

Legit 0.42 0.37 0.33 0.49
IPCTC 0.071 0.062 0.77 1.45
TRCTC 0.40 0.13 0.41 0.69
Jitterbug 0.18 0.17 0.66 1.20

Performance

• CCE test is most reliable, but also
most expensive.

• Worker packet loss more than
doubles using CCE test.

• No significant increase in packet loss
without CCE test.

9/23/1648

Conclusion

• CTC detection can be efficiently
implemented in Bro.

• Detection tests performed mostly as
expected.

• Different thresholds are required for
different applications for best results.

• CCE Test is most effective, but
increases packet loss.

9/23/1649

Future Work

• More detection tests.
• More types of CTCs.

• Reduce packet loss rate.
• Improve scaling by copying or

‘shunting’ long flows to a designated
Bro box to collect needed IPDs

• Combine with GPU to perform
expensive tests (CCE).

• We need your help!
– ESnet doesn’t have much to

covertly transmit.

9/23/1650

References

1. R. Archibald and D. Ghosal. A comparative analysis of detection metrics for covert timing
channels. Computers & Security, 2014.
2. S. Cabuk. Network covert channels: Design, analysis, detection, and elimination. Ph.D.
dissertation, Purdue University, West Lafayette, IN., USA, 2006.
3. S. Cabuk, C. Brodley, and C. Shields. Ip covert timing channels: Design and detection.
Proceedings of the 2004 ACM Conference on Computer and Communications Security, 2004.
4. M. Caetano, P. Vieira, J. Bordim, and P. Barreto. International journal of computer science and
network security. International Journal of Computer Science and Network Security, vol. 10, pp. 13-
20, August, 2010
5. S. Gianvecchio and H. Wang. An entropy-based approach to detecting covert channels. In IEEE
Transactions on Dependable and Secure Computing, Vol. 8, No. 6, 2011.
6. M. Guinther. Multi-core network acceleration: Breakthrough networking performance with
optimized software for multi-core processors. Wind River Systems, Inc., 2010. 12 Anonymous.

9/23/1651

References

7. W.-M. Hu. Reducing timing channels with fuzzy time. Journal of Computer Security 1.3, 1992:
233-254, 1992.
8. M. H. Kang, I. Moskowitz, and S. Chincheck. The pump: A decade of covert fun. Computer
Security Applications Conference, 21st Annual, IEEE, 2005.
9. K. Kothari. Mimic: An active covert channel that evades regularity-based detection. Comput.
Netw., vol. 57, no. 3, 2013.
10. K. S. Lee, H. Wang, and H. Weatherspoon. Phy covert channel: Can you see the idles.
USENIX symposium on Networked Systems Design and Implementation (NSDI), April, 2014.
11. tcpreplay developers. tcpreplay website. http: // tcpreplay. synfin. net/ trac/ wiki/ tcpreplay. ,
2014.
12. CAIDA. CAIDA Data. http: // www. caida. org/ data/ overview/ , 2014

9/23/1652

