
VAST: Interactive Network Forensics

Matthias Vallentin
matthias@bro.org

BroCon
August 5, 2015

http://matthias.vallentin.net
mailto:matthias@bro.org

Demo I

2 / 26

Data Pyramid

Filtered
Data

Aggregated Data

Structured Data

Raw Data

Data
Volume

High
Fidelity

Low
Fidelity

3 / 26

Data Pyramid

Alarms

Bro Logs

Bro Events

Packets

Data
Volume

High
Fidelity

Low
Fidelity

4 / 26

Data Pyramid

Exit
Status

Process Events

System Calls

Instruction Stream

Data
Volume

High
Fidelity

Low
Fidelity

5 / 26

VAST: Visibility Across Space and Time
Archive

Index

Import Export

Key Features
I Interactive response times
I Horizontal scaling over a cluster
I Iterative query refinement

I Type-rich data model
I Strongly typed query language
I Historical & continuous queries

6 / 26

High-Level Architecture of VAST

Import
I Sources produce events
I PCAP, Bro logs, BGPdump, . . .

Archive
I Key-value store (IDs → events)
I Stores raw data as events

Index
I Bitmap indexes over event data
I Hits are event IDs in archive

Export
I Sinks consume events
I PCAP, Bro logs, ASCII, JSON

10.0.0.1 10.0.0.254 53/udp
10.0.0.2 10.0.0.254 80/tcp

Import

7 / 26

High-Level Architecture of VAST

Import
I Sources produce events
I PCAP, Bro logs, BGPdump, . . .

Archive
I Key-value store (IDs → events)
I Stores raw data as events

Index
I Bitmap indexes over event data
I Hits are event IDs in archive

Export
I Sinks consume events
I PCAP, Bro logs, ASCII, JSON

Archive

10.0.0.1 10.0.0.254 53/udp
10.0.0.2 10.0.0.254 80/tcp

Import

7 / 26

High-Level Architecture of VAST

Import
I Sources produce events
I PCAP, Bro logs, BGPdump, . . .

Archive
I Key-value store (IDs → events)
I Stores raw data as events

Index
I Bitmap indexes over event data
I Hits are event IDs in archive

Export
I Sinks consume events
I PCAP, Bro logs, ASCII, JSON

IndexArchive

10.0.0.1 10.0.0.254 53/udp
10.0.0.2 10.0.0.254 80/tcp

Import

7 / 26

High-Level Architecture of VAST

Import
I Sources produce events
I PCAP, Bro logs, BGPdump, . . .

Archive
I Key-value store (IDs → events)
I Stores raw data as events

Index
I Bitmap indexes over event data
I Hits are event IDs in archive

Export
I Sinks consume events
I PCAP, Bro logs, ASCII, JSON

Export

IndexArchive

10.0.0.1 10.0.0.254 53/udp
10.0.0.2 10.0.0.254 80/tcp

Import

7 / 26

VAST & Big Data
MapReduce (Hadoop)
Batch-oriented processing: full scan of data
+ Expressive: no restriction on algorithms
- Speed & Interactivity: full scan for each query

In-memory Cluster Computing (Spark)
Load full data set into memory and then run query
+ Speed & Interactivity: fast on arbitrary queries over working set
- Thrashing when working set too large

Distributed Indexing (VAST)
Distributed building and querying of bitmap indexes
+ Fast: only access space-efficient indexes
+ Caching of index hits enables iterative analyses
- Lookup only, not arbitrary computation

8 / 26

VAST & Big Data
MapReduce (Hadoop)
Batch-oriented processing: full scan of data
+ Expressive: no restriction on algorithms
- Speed & Interactivity: full scan for each query

In-memory Cluster Computing (Spark)
Load full data set into memory and then run query
+ Speed & Interactivity: fast on arbitrary queries over working set
- Thrashing when working set too large

Distributed Indexing (VAST)
Distributed building and querying of bitmap indexes
+ Fast: only access space-efficient indexes
+ Caching of index hits enables iterative analyses
- Lookup only, not arbitrary computation

8 / 26

VAST & Big Data
MapReduce (Hadoop)
Batch-oriented processing: full scan of data
+ Expressive: no restriction on algorithms
- Speed & Interactivity: full scan for each query

In-memory Cluster Computing (Spark)
Load full data set into memory and then run query
+ Speed & Interactivity: fast on arbitrary queries over working set
- Thrashing when working set too large

Distributed Indexing (VAST)
Distributed building and querying of bitmap indexes
+ Fast: only access space-efficient indexes
+ Caching of index hits enables iterative analyses
- Lookup only, not arbitrary computation

8 / 26

VAST & SIEM

Splunk
Data Model Unstructured text
Index B-tree
Computation MapReduce
Code Closed-source
License Data-volume based

ElasticSearch
Data Model Rich (Lucene)
Index Inverted (Lucene)
Computation Index Lookup
Code Open-source
License Apache 2.2

VAST
Data Model Rich (Bro)
Index Bitmap Indexes
Computation Index Lookup
Code Open-source
License BSD (3-clause)

9 / 26

VAST & SIEM

Splunk
Data Model Unstructured text
Index B-tree
Computation MapReduce
Code Closed-source
License Data-volume based

ElasticSearch
Data Model Rich (Lucene)
Index Inverted (Lucene)
Computation Index Lookup
Code Open-source
License Apache 2.2

VAST
Data Model Rich (Bro)
Index Bitmap Indexes
Computation Index Lookup
Code Open-source
License BSD (3-clause)

9 / 26

VAST & SIEM

Splunk
Data Model Unstructured text
Index B-tree
Computation MapReduce
Code Closed-source
License Data-volume based

ElasticSearch
Data Model Rich (Lucene)
Index Inverted (Lucene)
Computation Index Lookup
Code Open-source
License Apache 2.2

VAST
Data Model Rich (Bro)
Index Bitmap Indexes
Computation Index Lookup
Code Open-source
License BSD (3-clause)

9 / 26

Types: Interpretation of Data
TYPE

record

vector set

table

KEY VALUE

TYPETYPE

field 1

TYPE

field n

TYPE

…

container types

basic types

compound types

recursive types

bool

int

count

real

duration

time

string

pattern

address

subnet

port

none

10 / 26

Query Language
Boolean Expressions

I Conjunctions &&
I Disjunctions ||
I Negations !
I Predicates

I LHS op RHS
I (expr)

Examples
I A && B || !(C && D)
I orig_h == 10.0.0.1 && &time < now - 2h
I &type == "conn" || "foo" in :string
I duration > 60s && service == "tcp"

Extractors
I &type
I &time
I x.y.z.arg
I :type

Relational Operators
I <, <=, ==, >=, >
I in, ni, [+, +]
I !in, !ni, [-, -]
I ~, !~

Values
I T, F
I +42, 1337, 3.14
I "foo"
I 10.0.0.0/8
I 80/tcp, 53/?
I {1, 2, 3}

11 / 26

Index Hits: Sets of Event IDs

Bitvector: ordered set of IDs
I Query result ≡ set of event IDs from [0, 264 − 1)
→ Model as bit vector: [4, 7, 8] = 0000100110 · · ·
I Run-length encoded
I Append-only
I Bitwise operations do not require decoding

Bitmap: maps values to bit vectors
I push_back(T x): append value x of type T
I lookup(T x, Op ◦): get bit vector for x under ◦

0

264 � 1

.
0
0
0
0
1
1
0
0
0
0
1
.

=

2

1

2

0

0

1

3

0

0

0

1

1

0

0

0

1

0

0

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

B1 B2 B3B0

Data Bitmap

12 / 26

Composing Results via Bitwise Operations
Combining Predicates

I Query Q = X ∧Y ∧ Z
I x = 1.2.3.4 ∧ y < 42 ∧ z ∈ ”foo”

I Bitmap index lookup yields X → B1, Y → B2, and Z → B3
I Result R = B1 & B2 & B3

& &

B1 B3

=

B2 R

13 / 26

What happened since BroCon’14?

New Features
I Continuous queries

I Apply queries to arriving data

I Time Machine
I Full indexes on time stamp and connection tuple
I Bidirectional flow cut-off

I New event sources
I BGPdump
I JSON/Kafka (not yet merged)

I Distributed Architecture
I Commutativity: support message reordering
I Associativity: parallel query engine

14 / 26

What happened since BroCon’14?

New Features
I Continuous queries

I Apply queries to arriving data
I Time Machine

I Full indexes on time stamp and connection tuple
I Bidirectional flow cut-off

I New event sources
I BGPdump
I JSON/Kafka (not yet merged)

I Distributed Architecture
I Commutativity: support message reordering
I Associativity: parallel query engine

14 / 26

What happened since BroCon’14?

New Features
I Continuous queries

I Apply queries to arriving data
I Time Machine

I Full indexes on time stamp and connection tuple
I Bidirectional flow cut-off

I New event sources
I BGPdump
I JSON/Kafka (not yet merged)

I Distributed Architecture
I Commutativity: support message reordering
I Associativity: parallel query engine

14 / 26

What happened since BroCon’14?

New Features
I Continuous queries

I Apply queries to arriving data
I Time Machine

I Full indexes on time stamp and connection tuple
I Bidirectional flow cut-off

I New event sources
I BGPdump
I JSON/Kafka (not yet merged)

I Distributed Architecture
I Commutativity: support message reordering
I Associativity: parallel query engine

14 / 26

What happened since BroCon’14?

New Features
I Continuous queries

I Apply queries to arriving data
I Time Machine

I Full indexes on time stamp and connection tuple
I Bidirectional flow cut-off

I New event sources
I BGPdump
I JSON/Kafka (not yet merged)

I Distributed Architecture
I Commutativity: support message reordering
I Associativity: parallel query engine

14 / 26

Distributed VAST

I

A X

E

importer

archive index

exporter

node

node: the logical unit of deployment
I A container for actors/components
I Message serialization only at node boundaries
→ Maps to single OS process, typically one per machine

15 / 26

Distributed VAST: Replicated Cores

I

A X

E

I

A X

E

I

A X

E

16 / 26

Distributed VAST: Replicated Cores
source

I

A X

sink

E

I

A X

E

I

A X

E

17 / 26

Distributed VAST: Custom Deployment
source

I

A
X

sink

E

I

X

I

A X

E

HDD

SSD SSD

source

18 / 26

Demo II

19 / 26

Demo Topology: Import

I

A X

I

A X

foo bar

ID

20 / 26

Demo Topology: Import

I

A X

I

A X

foo bar

ID

source

21 / 26

Demo Topology: Export (naive)

A X

E

A X

foo bar

sink
22 / 26

Demo Topology: Export (better)

A X

E

A X

E

foo bar

23 / 26

Demo Topology: Export (good)

A X

E

A X

E

foo bar

sink

24 / 26

Future Work: Moving Forward
Next Milestone: Release

I Architecture converging: feature freeze for 0.1 soon
I Thorough testing of distributed architecture
I Improve index size of strings and containers

Down The Line
I Improved Bro integration

I Unify data model with Broker
I VAST writer for Bro

I Fault tolerance
I Data replication (replicate archive & index)
I Query snapshotting (resume failed execution)
I Use Raft to manage global state (large-scale clusters)

I Interface with Spark to enable arbitrary computation
I Interface with Spicy for powerful event import/export

25 / 26

Future Work: Moving Forward
Next Milestone: Release

I Architecture converging: feature freeze for 0.1 soon
I Thorough testing of distributed architecture
I Improve index size of strings and containers

Down The Line
I Improved Bro integration

I Unify data model with Broker
I VAST writer for Bro

I Fault tolerance
I Data replication (replicate archive & index)
I Query snapshotting (resume failed execution)
I Use Raft to manage global state (large-scale clusters)

I Interface with Spark to enable arbitrary computation
I Interface with Spicy for powerful event import/export

25 / 26

Future Work: Moving Forward
Next Milestone: Release

I Architecture converging: feature freeze for 0.1 soon
I Thorough testing of distributed architecture
I Improve index size of strings and containers

Down The Line
I Improved Bro integration

I Unify data model with Broker
I VAST writer for Bro

I Fault tolerance
I Data replication (replicate archive & index)
I Query snapshotting (resume failed execution)
I Use Raft to manage global state (large-scale clusters)

I Interface with Spark to enable arbitrary computation
I Interface with Spicy for powerful event import/export

25 / 26

Future Work: Moving Forward
Next Milestone: Release

I Architecture converging: feature freeze for 0.1 soon
I Thorough testing of distributed architecture
I Improve index size of strings and containers

Down The Line
I Improved Bro integration

I Unify data model with Broker
I VAST writer for Bro

I Fault tolerance
I Data replication (replicate archive & index)
I Query snapshotting (resume failed execution)
I Use Raft to manage global state (large-scale clusters)

I Interface with Spark to enable arbitrary computation

I Interface with Spicy for powerful event import/export

25 / 26

Future Work: Moving Forward
Next Milestone: Release

I Architecture converging: feature freeze for 0.1 soon
I Thorough testing of distributed architecture
I Improve index size of strings and containers

Down The Line
I Improved Bro integration

I Unify data model with Broker
I VAST writer for Bro

I Fault tolerance
I Data replication (replicate archive & index)
I Query snapshotting (resume failed execution)
I Use Raft to manage global state (large-scale clusters)

I Interface with Spark to enable arbitrary computation
I Interface with Spicy for powerful event import/export

25 / 26

Questions?

More at:
http://vast.tools

26 / 26

http://vast.tools

