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It’s showing its age …
Race conditions with &synchronized. 
No good persistence story. 
Not much control over data flow. 
Complex & inefficient protocol. 
Implementation deficiencies. 
Two independent implementations.
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Unified Library 

 New protocol 
 Publish/subscribe 
 Limiting type system’s flexibility. 
 Explicit state operations.
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Choice of SQLite or RocksDB.
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Credit for Broker goes to Jon Siwek!
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