Broker
Bro’'s New Communication Library

Robin Sommer
ICSI| / LBNL / Broala

robin@icsi.berkeley.edu
robin@broala.com
http://www.icir.org/robin

@ brodla

...........

mailto:robin@icir.org

Bro Communication

| |
@ brodic

Bro Communication

-Xchanging Events
Separates event generation from handling.

| |
@ brodia

Bro Communication

-Xchanging Events
Separates event generation from handling.

Logging Remotely

Aggregates logs on remote side.

| |
@ brodia

Bro Communication

-Xchanging Events
Separates event generation from handling.

Logging Remotely

Aggregates logs on remote side.

Distributing State

Provides shared view across instances.

| |
@ brodia

Bro Communication

-Xchanging Events
Separates event generation from handling.

Logging Remotely

Aggregates logs on remote side.

Distributing State

Provides shared view across instances.

| |
@ brodia

Use Case: Bro Cluster

Bro
Manager
Logs & Even/ \\
Bro Bro Bro
Worker 1 Worker 2 Worker 3

Load-balanced Traffic Stream

| |
@ brodia

Use Case: Bro Cluster

Bro Bro

Manager

Logs & Events &synchronized State

S
Bro Bro Bro
Worker 1 Worker 2 Worker 3

Load-balanced Traffic Stream

] |
@ brodia

Use Case: External Integration

Bro
Events
\/
Application Application Application
A B C

(00 v

Broker 4

Traditional Implementation

Events
Logs
State Updates

Bro A Bro B

| |
@ brodia

Traditional Implementation

Events
Logs
State Updates

Child Child
BroA < > —> < > BroB

Process Process

| |
@ brodia

Traditional Implementation

Events
Logs
State Updates

Child Child
BroA < > — > < > BroB
Process Process
Events
libbroccoli
! l C Python Ruby Perl
| |
L brocla

Traditional Implementation

Events

It’'s showing its age ...

Race conditions with &synchronized.

Bro A Bro B

NO good persistence story.

Not much control over data flow.
Complex & inefficient protocol.
Implementation deficiencies.

Two Independent implementations.

@ - brodia

| ————

Introducing the Broker Library

Events
Logs
State Updates

Bro A Bro B

| |
@ brodia

Introducing the Broker Library

Events
Logs
State Updates

Bro A Broker < » Broker Bro B

| |
@ brodia

Introducing the Broker Library

Events
Logs
State Updates

Bro A Broker < x > Broker Bro B
\ 4
Broker
C
Application C++
Python

] |
@ brodia

Introducing the Broker Library

Events
Logs
State Updates

Bro A Broke Broker Bro B

Unified Library

New protocol
Publish/subscribe

Limiting type system’s flexibility.
Explicit state operations.

® brodla

Exchanging Events with Broker

my event(“Bro”, 42)

Bro Broker Broker Bro

Sender Receiver

| |
@ brodia

Exchanging Events with Broker

Topic: “bro/event”

my event(“Bro”, 42)

Bro Broker Broker Bro

Sender Receiver

| |
@ brodia

Exchanging Events with Broker

subscribe to events(“bro/event”)

Topic: “bro/event”

my event(“Bro”, 42)

Bro Broker Broker Bro

Sender Receiver

| |
@ brodia

Exchanging Events with Broker

subscribe to events(“bro/event”)

Topic: “bro/event”

my event(“Bro”, 42)

Bro Broker Broker Bro

Sender Receiver

my event(“Bro”, 42)

] |
@ brodia

Exchanging Events with Broker

subscribe to events(“bro/event”)

Topic: “bro/event”

my event(“Bro”, 42) g my event(“Bro”, 42)
<
Bro Broker Broker Bro
>
Sender Receiver

my event(“Bro”, 42)

] |
@ brodia

Exchanging Events with Broker

Demo

| |
@ brodia
N

Forwarding Logs with Broker

Log::write(..)

Bro Broker Broker Bro

Sender Receiver

| |
@ brodia

Forwarding Logs with Broker

Topic: “bro/log”

Log::write(..)

Bro Broker Broker Bro

Sender Receiver

| |
@ brodia

Forwarding Logs with Broker

subscribe to logs(“bro/log”)

Topic: “bro/log”

Log::write(..)

Bro Broker Broker Bro

Sender Receiver

| |
@ brodia

Forwarding Logs with Broker

subscribe to logs(“bro/log”)

Topic: “bro/log”

Log::write(..)

Bro Broker Broker Bro

Sender Receiver

Log::write(...)

| |
@ brodia

Forwarding Logs with Broker

subscribe to logs(“bro/log”)

Topic: “bro/log”

Log: :write(..) § Log: :write(..)
<
Bro Broker Broker Bro
>
Sender Receiver

Log::write(...)

] |
@ brodia

Data Stores with Broker

(00 v

Broker 10

Data Stores with Broker

Broker maintains global, persistent key/value stores.

(00 v

Broker 10

Data Stores with Broker

Broker maintains global, persistent key/value stores.

Bro Broker Broker Bro

Client Master

(00 v

Broker 10

Data Stores with Broker

Broker maintains global, persistent key/value stores.

S = create master(“my store”)

Bro Broker Broker Bro

Key Value

Client

Authoritative Version

(00 v

Broker 10

Data Stores with Broker

Broker maintains global, persistent key/value stores.

S = create master(“my store”)
insert(s, 192.150.187.12, 21)

Bro Broker Broker Bro

Key Value

Client

192.150.187.12 21

Authoritative Version

(00 v

Broker 10

Data Stores with Broker

Broker maintains global, persistent key/value stores.

S = create master(“my store”)
insert(s, 192.150.187.12, 21)
insert(s, 131.159.14.1, 5)

Bro Broker Broker Bro

Key Value

Client

192.150.187.12 21

131.159.14.1 5

Authoritative Version

(00 v

Broker 10

Data Stores with Broker

Broker maintains global, persistent key/value stores.

c = create clone(“my store”) S = create_master(“my_store”)
insert(s, 192.150.187.12, 21)

insert(s, 131.159.14.1, 5)

Bro Broker Broker Bro

Key Value

Client

192.150.187.12 21

131.159.14.1 5

Authoritative Version

(00 v

Broker 10

Data Stores with Broker

Broker maintains global, persistent key/value stores.

c = create clone(“my store”) S = create_master(“my_store”)
insert(s, 192.150.187.12, 21)

insert(s, 131.159.14.1, 5)

clone()
Bro Broker g Broker Bro
Key Value Key Value
192.150.187.12 21
131.159.14.1 5
Cached Version Authoritative Version

(00 v

Broker 10

Data Stores with Broker

Broker maintains global, persistent key/value stores.

c = create clone(“my store”) S = create_master(“my_store”)
insert(s, 192.150.187.12, 21)

insert(s, 131.159.14.1, 5)

clone()
>
Bro Broker { content } Broker Bro
<

Key Value Key Value
192.150.187.12 21 192.150.187.12 21
131.159.14.1 5 131.159.14.1 5

Cached Version Authoritative Version

(00 v

Broker 10

Data Stores with Broker

Broker maintains global, persistent key/value stores.

c = create clone(“my store”) S = create_master(“my_store”)
insert(s, 192.150.187.12, 21)

insert(s, 131.159.14.1, 5)

>

Bro Broker Broker Bro
<
Key Value Key Value
192.150.187.12 21 192.150.187.12 21
131.159.14.1 5 131.159.14.1 5

Bro Broker

Cached Version Authoritative Version

Key Value

192.150.187.12 21

I I
I I
|m| 131.159.14.1 5 bml
_ Cached Version|

Data Stores with Broker

Broker maintains global, persistent key/value stores.

— V7j
create clone(“my store”) S = create_master(“my_store”)

n = lookup(c, 192.150.187.12) insert(s, 192.150.187.12, 21)
insert(s, 131.159.14.1, 5)

>

Bro Broker Broker Bro
<
Key Value Key Value
192.150.187.12 21 192.150.187.12 21
131.159.14.1 5 131.159.14.1 5

Bro Broker

Cached Version Authoritative Version

Key Value

192.150.187.12 21

I I
I I
| | 131.159.14.1 5 w@
_ Cached Version|

Data Stores with Broker

Broker maintains global, persistent key/value stores.

c = create clone(“my store”) S = create_master(“my_store”)
n = lookup(c, 192.150.187.12) insert(s, 192.150.187.12, 21)
insert(c, 192.150.187.43, 1947) insert(s, 131.159.14.1, 5)
>
Bro Broker Broker Bro
<
Key Value Key Value
192.150.187.12 21 192.150.187.12 21
131.159.14.1 5 131.159.14.1 5

Bro Broker

Cached Version Authoritative Version

Key Value

192.150.187.12 21

I I

I I

| | 131.159.14.1 5
_ Cached Version|

Data Stores with Broker

Broker maintains global, persistent key/value stores.

c = create clone(“my store”) S = create_master(“my_store”)
n = lookup(c, 192.150.187.12) insert(s, 192.150.187.12, 21)
insert(c, 192.150.187.43, 1947) insert(s, 131.159.14.1, 5)
insert(..)
>
Bro Broker Broker Bro
<
Key Value Key Value
192.150.187.12 21 192.150.187.12 21
131.159.14.1 5 131.159.14.1 5
Bro BrOker 192.150.187.43 1947

Cached Version Authoritative Version

Key Value

192.150.187.12 21

I I
I I
| | 131.159.14.1 5 w@
_ Cached Version|

Data Stores with Broker

Broker maintains global, persistent key/value stores.

c = create clone(“my store”) S = create_master(“my_store”)
n = lookup(c, 192.150.187.12) insert(s, 192.150.187.12, 21)
insert(c, 192.150.187.43, 1947) insert(s, 131.159.14.1, 5)
insert(..)
Bro Broker < insert(..) g Broker Bro
Key Value Key Value
insert(..)

192.150.187.12 21 192.150.187.12 21

131.159.14.1 5 131.159.14.1 5

192.150.187.43 1947 Bro BrOker 192.150.187.43 1947

Cached Version Authoritative Version

Key Value

192.150.187.12 21

| |
| |
| | 131.159.14.1 5
j Cached Version

Data Stores with Broker

Demo

(00 v

Broker |

Data Store Features

(00 v

Broker 12

Data Store Features

Data Types
Supports Bro data types for keys & values.

(00 v

Broker 12

Data Store Features

Data Types
Supports Bro data types for keys & values.

Operations
Increment/decrement.
Set insert/delete.
Vector push/pop.

Automatic expiry.

(00 v

Broker 12

Data Store Features

Data Types
Supports Bro data types for keys & values.

Operations
Increment/decrement.
Set insert/delete.
Vector push/pop.

Automatic expiry.

Persistence
Choice of SQLite or RocksDB.

(00 v

Broker 12

Broker Bits & Pieces

(00 v

Broker 13

Broker Bits & Pieces

Fine-granular Subscription Model

All elements come with a topic or name.
Prefixed-based subscription for topics.
Fine control what's published and subscribed to.

(00 v

Broker 13

Broker Bits & Pieces

Fine-granular Subscription Model

All elements come with a topic or name.
Prefixed-based subscription for topics.
Fine control what's published and subscribed to.

Security Model

Peers are assumed to be trustworthy.
Currently no encryption/authentication; SSL later.

(00 v

Broker 13

Broker’s Foundation: CAF

C++ Actor Framework

http://actor-framework.org Uw‘

Broker 14

Broker’s Foundation: CAF

C++ Actor Framework

Concurrency through Erlang-style lightweight actors.
Concise messaging API.

Network-transparency abstracting transport.
Efficient and adaptive.

BSD license.

C++ Actor Framework

http://actor-framework.org b,m‘

Broker 14

Broker’s Foundation: CAF

C++ Actor Framework
Concurrency through Erlang-style lightweight actors.
Concise messaging API.
Network-transparency abstracting transport.

Efficient and adaptive.
BSD license.

Trade-0Offs

Needs a C++11 compiler.
Introduces a new, non-standard dependency.

C++ Actor Framework

http://actor-framework.org b,m‘

Broker 14

The Future: A “Stateful Deep Cluster”

(00 v

Broker 15

The Future: A “Stateful Deep Cluster”

Example: Geographically distributed organization.

Global Master Bro

(00 v

Broker 15

The Future: A “Stateful Deep Cluster”

Example: Geographically distributed organization.

Global Master

Regional Heads // \\
Bro Bro Bro Bro

-] brocle

Broker 15

The Future: A “Stateful Deep Cluster”

Example: Geographically distributed organization.

Global Master

Regional Head;o /B / \B\ .
] /\ /\ /\

1@| Bro Bro Bro Bro
| |
L e =

Broker 15

The Future: A “Stateful Deep Cluster”

Example: Geographically distributed organization.

Corp/GLOBAL/

Global Master Bro

7N O

Regional Heads Corp/US/ Corp/UK/ Corp/FR/ Corp/CN/

/ \ AN

Bro Bro Bro Bro
us UK FR CN
[\ [\ [\ [\

Corp/US/.. Corp/US/.. Corp/UK/.. Corp/UK/.. Corp/FR/.. Corp/FR/.. Corp/CN/.. Corp/CN/..

L ocal Clusters/ \ / \ / \ / \
Im: Bro Bro Bro Bro Bro Bro
W oo =

Broker 15

The Future: A “Stateful Deep Cluster”

Example: Geographically distributed organization.

Corp/GLOBAL/

Data
Node

VAR

Regional Heads Corp/US/ Corp/UK/ Corp/FR/ Corp/CN/

v \ AN

Global Master Bro

B o Data B o Data B o Data B o Data

Nod Nod Nod Nod
us o UK o FR o CN o
Corp/US/.. Corp/US/.. Corp/UK/.. Corp/UK/.. Corp/FR/.. Corp/FR/.. Corp/CN/.. Corp/CN/..

L ocal Clusters/ \ / \ / \ / \
:@: Bro Bro Bro Bro Bro Bro
L oo =

Broker 15

Broker, beyond Bro

(00 v

Broker 16

Broker, beyond Bro

Distributed,
real-time

publish/subscribe

platform,

with a data model.

Broker

(00 v

What This All Means for You Right Now

(00 v

Broker 17

What This All Means for You Right Now

Bro 2.4

Legacy communication still the primary mechanism.
Broker optional, —enable-broker to compile support. (CAF0.13, C++11)

(00 v

Broker 17

What This All Means for You Right Now

Bro 2.4

Legacy communication still the primary mechanism.
Broker optional, —enable-broker to compile support. (CAF0.13, C++11)

Git master, as of today

Legacy communication still the primary mechanism.
Broker built by default, —disable-broker turns off. (CAF0.14, C++11)

(00 v

Broker 17

What This All Means for You Right Now

Bro 2.4

Legacy communication still the primary mechanism.
Broker optional, —enable-broker to compile support. (CAF0.13, C++11)

Git master, as of today

Legacy communication still the primary mechanism.
Broker built by default, —disable-broker turns off. (CAF0.14, C++11)

Bro 2.5 (tentative)

Broker provides primary communication mechanism.
Legacy communication deprecated, but remains available.

(00 v

Broker 17

What This All Means for You Right Now

Bro 2.4

Legacy communication still the primary mechanism.
Broker optional, —enable-broker to compile support. (CAF0.13, C++11)

Git master, as of today

Legacy communication still the primary mechanism.
Broker built by default, —disable-broker turns off. (CAF0.14, C++11)

Bro 2.5 (tentative)

Broker provides primary communication mechanism.
Legacy communication deprecated, but remains available.

Bro 2.6 (even more tentative)

Broker provides primary communication mechanism.
Legacy communication no longer available.

® 0(00

Broker 17

What This All Meanr *~r You Right Now

Credit for Broker goes t

— 0 Jon Siwekr
Bro 2.4 T —
Legacy communication still the primary mechanism.
Broker optional, —enable-broker to compile support. (CAF0.13, C++11)

Git master, as of today

Legacy communication still the primary mechanism.
Broker built by default, —disable-broker turns off. (CAF0.14, C++11)

Bro 2.5 (tentative)

Broker provides primary communication mechanism.
Legacy communication deprecated, but remains available.

Bro 2.6 (even more tentative)

Broker provides primary communication mechanism.
Legacy communication no longer available.

® 000 ®

Broker 17

|
I
I

|
I
l

Questions?

Robin Sommer
ICSI| / LBNL / Broala

robin@icsi.berkeley.edu
robin@broala.com
http://www.icir.org/robin

mailto:robin@icir.org

