
Robin Sommer
ICSI / LBNL / Broala

robin@icsi.berkeley.edu
robin@broala.com

http://www.icir.org/robin

Broker
Bro’s New Communication Library

mailto:robin@icir.org

Broker

Bro Communication

2

Broker

Bro Communication

Exchanging Events
Separates event generation from handling.

2

Broker

Bro Communication

Exchanging Events
Separates event generation from handling.

Logging Remotely
Aggregates logs on remote side.

2

Broker

Bro Communication

Exchanging Events
Separates event generation from handling.

Logging Remotely
Aggregates logs on remote side.

Distributing State
Provides shared view across instances.

2

Broker

Bro Communication

Exchanging Events
Separates event generation from handling.

Logging Remotely
Aggregates logs on remote side.

Distributing State
Provides shared view across instances.

2

Broker

Use Case: Bro Cluster

3

Bro

Manager

Bro

Worker 1

Bro

Worker 2

Load-balanced Traffic Stream

Bro

Worker 3

Logs & Events

Broker

Use Case: Bro Cluster

3

Bro

Manager

Bro

Worker 1

Bro

Worker 2

Load-balanced Traffic Stream

Bro

Proxy

Bro

Worker 3

&synchronized StateLogs & Events

Broker

Use Case: External Integration

4

Application
A

Application
B

Events

Bro

Application
C

Broker

Traditional Implementation

5

Bro A Bro B

Events
Logs

State Updates

Broker

Traditional Implementation

5

Bro A
Child

Process

Child

Process
Bro B

Events
Logs

State Updates

Broker

Traditional Implementation

5

Bro A
Child

Process

Child

Process
Bro B

libbroccoli

Events
Logs

State Updates

Events

C Python Ruby Perl

Broker

Traditional Implementation

5

Bro A
Child

Process

Child

Process
Bro B

libbroccoli

Events
Logs

State Updates

Events

C Python Ruby Perl

It’s showing its age …
Race conditions with &synchronized.
No good persistence story.
Not much control over data flow.
Complex & inefficient protocol.
Implementation deficiencies.
Two independent implementations.

Broker

Introducing the Broker Library

6

Bro A Bro B

Events
Logs

State Updates

Broker

Introducing the Broker Library

6

Bro A Bro BBroker Broker

Events
Logs

State Updates

Broker

Introducing the Broker Library

6

Bro A Bro BBroker Broker

Broker

C
C++

Python
Application

Events
Logs

State Updates

Broker

Introducing the Broker Library

6

Bro A Bro BBroker Broker

Broker

C
C++

Python
Application

Events
Logs

State Updates

Broker
Unified Library

 New protocol
 Publish/subscribe
 Limiting type system’s flexibility.
 Explicit state operations.

Broker

Exchanging Events with Broker

7

BroBrokerBrokerBro

ReceiverSender

my_event(“Bro”, 42)

Broker

Exchanging Events with Broker

7

BroBrokerBrokerBro

ReceiverSender

my_event(“Bro”, 42)

Topic: “bro/event”

Broker

Exchanging Events with Broker

7

BroBrokerBrokerBro

ReceiverSender

subscribe_to_events(“bro/event”)

my_event(“Bro”, 42)

Topic: “bro/event”

Broker

Exchanging Events with Broker

7

BroBrokerBrokerBro

ReceiverSender

subscribe_to_events(“bro/event”)

my_event(“Bro”, 42)

my_event(“Bro”, 42)

Topic: “bro/event”

Broker

Exchanging Events with Broker

7

BroBrokerBrokerBro

ReceiverSender

subscribe_to_events(“bro/event”)

my_event(“Bro”, 42) my_event(“Bro”, 42)

my_event(“Bro”, 42)

Topic: “bro/event”

Broker

Exchanging Events with Broker

8

Demo

Broker

Forwarding Logs with Broker

9

Broker BroBrokerBro

ReceiverSender

Log::write(…)

Broker

Forwarding Logs with Broker

9

Broker BroBrokerBro

ReceiverSender

Log::write(…)

Topic: “bro/log”

Broker

Forwarding Logs with Broker

9

Broker BroBrokerBro

ReceiverSender

subscribe_to_logs(“bro/log”)

Log::write(…)

Topic: “bro/log”

Broker

Forwarding Logs with Broker

9

Broker BroBrokerBro

ReceiverSender

subscribe_to_logs(“bro/log”)

Log::write(…)

Log::write(…)

Topic: “bro/log”

Broker

Forwarding Logs with Broker

9

Broker BroBrokerBro

ReceiverSender

subscribe_to_logs(“bro/log”)

Log::write(…) Log::write(…)

Log::write(…)

Topic: “bro/log”

Broker

Data Stores with Broker

10

Broker

Data Stores with Broker

10

Broker maintains global, persistent key/value stores.

Broker

Data Stores with Broker

10

Bro Broker BroBroker

Client Master

Broker maintains global, persistent key/value stores.

Broker

Data Stores with Broker

10

Bro Broker BroBroker

Client Master

Broker maintains global, persistent key/value stores.
s = create_master(“my_store”)

Key Value

Authoritative Version

Broker

Data Stores with Broker

10

Bro Broker BroBroker

Client Master

Broker maintains global, persistent key/value stores.
s = create_master(“my_store”)

Key Value

Authoritative Version

insert(s, 192.150.187.12, 21)

192.150.187.12 21

Broker

Data Stores with Broker

10

Bro Broker BroBroker

Client Master

Broker maintains global, persistent key/value stores.
s = create_master(“my_store”)

Key Value

Authoritative Version

insert(s, 192.150.187.12, 21)

192.150.187.12 21

insert(s, 131.159.14.1, 5)

131.159.14.1 5

Broker

Data Stores with Broker

10

Bro Broker BroBroker

Client Master

Broker maintains global, persistent key/value stores.
s = create_master(“my_store”)

Key Value

Authoritative Version

insert(s, 192.150.187.12, 21)

192.150.187.12 21

insert(s, 131.159.14.1, 5)

131.159.14.1 5

c = create_clone(“my_store”)

Broker

Data Stores with Broker

10

Bro Broker BroBroker

Client Master

Broker maintains global, persistent key/value stores.
s = create_master(“my_store”)

Key Value

Authoritative Version

insert(s, 192.150.187.12, 21)

192.150.187.12 21

insert(s, 131.159.14.1, 5)

131.159.14.1 5

c = create_clone(“my_store”)

clone()

Key Value

Cached Version

Broker

Data Stores with Broker

10

Bro Broker BroBroker

Client Master

Broker maintains global, persistent key/value stores.
s = create_master(“my_store”)

Key Value

Authoritative Version

insert(s, 192.150.187.12, 21)

192.150.187.12 21

insert(s, 131.159.14.1, 5)

131.159.14.1 5

c = create_clone(“my_store”)

clone()

Key Value

Cached Version

{ content }

192.150.187.12 21

131.159.14.1 5

Broker

Bro Broker

Key Value

Cached Version

192.150.187.12 21

131.159.14.1 5

Data Stores with Broker

10

Bro Broker BroBroker

Client Master

Broker maintains global, persistent key/value stores.
s = create_master(“my_store”)

Key Value

Authoritative Version

insert(s, 192.150.187.12, 21)

192.150.187.12 21

insert(s, 131.159.14.1, 5)

131.159.14.1 5

c = create_clone(“my_store”)

Key Value

Cached Version

192.150.187.12 21

131.159.14.1 5

Broker

Bro Broker

Key Value

Cached Version

192.150.187.12 21

131.159.14.1 5

Data Stores with Broker

10

Bro Broker BroBroker

Client Master

Broker maintains global, persistent key/value stores.
s = create_master(“my_store”)

n = lookup(c, 192.150.187.12)

Key Value

Authoritative Version

insert(s, 192.150.187.12, 21)

192.150.187.12 21

insert(s, 131.159.14.1, 5)

131.159.14.1 5

c = create_clone(“my_store”)

Key Value

Cached Version

192.150.187.12 21

131.159.14.1 5

Broker

Bro Broker

Key Value

Cached Version

192.150.187.12 21

131.159.14.1 5

Data Stores with Broker

10

Bro Broker BroBroker

Client Master

Broker maintains global, persistent key/value stores.
s = create_master(“my_store”)

insert(c, 192.150.187.43, 1947)

n = lookup(c, 192.150.187.12)

Key Value

Authoritative Version

insert(s, 192.150.187.12, 21)

192.150.187.12 21

insert(s, 131.159.14.1, 5)

131.159.14.1 5

c = create_clone(“my_store”)

Key Value

Cached Version

192.150.187.12 21

131.159.14.1 5

Broker

Bro Broker

Key Value

Cached Version

192.150.187.12 21

131.159.14.1 5

Data Stores with Broker

10

Bro Broker BroBroker

Client Master

Broker maintains global, persistent key/value stores.
s = create_master(“my_store”)

insert(c, 192.150.187.43, 1947)

n = lookup(c, 192.150.187.12)

Key Value

Authoritative Version

insert(s, 192.150.187.12, 21)

192.150.187.12 21

insert(s, 131.159.14.1, 5)

131.159.14.1 5

c = create_clone(“my_store”)

Key Value

Cached Version

192.150.187.12 21

131.159.14.1 5

insert(…)

192.150.187.43 1947

Broker

Bro Broker

Key Value

Cached Version

192.150.187.12 21

131.159.14.1 5

Data Stores with Broker

10

Bro Broker BroBroker

Client Master

Broker maintains global, persistent key/value stores.
s = create_master(“my_store”)

insert(c, 192.150.187.43, 1947)

n = lookup(c, 192.150.187.12)

Key Value

Authoritative Version

insert(s, 192.150.187.12, 21)

192.150.187.12 21

insert(s, 131.159.14.1, 5)

131.159.14.1 5

c = create_clone(“my_store”)

Key Value

Cached Version

192.150.187.12 21

131.159.14.1 5

insert(…)

192.150.187.43 1947

insert(…)

insert(…)

192.150.187.43 1947

192.150.187.43 1947

Broker

Data Stores with Broker

11

Demo

Broker

Data Store Features

12

Broker

Data Store Features

Data Types
Supports Bro data types for keys & values.

12

Broker

Data Store Features

Data Types
Supports Bro data types for keys & values.

Operations
Increment/decrement.
Set insert/delete.
Vector push/pop.
Automatic expiry.

12

Broker

Data Store Features

Data Types
Supports Bro data types for keys & values.

Operations
Increment/decrement.
Set insert/delete.
Vector push/pop.
Automatic expiry.

Persistence
Choice of SQLite or RocksDB.

12

Broker

Broker Bits & Pieces

13

Broker

Broker Bits & Pieces

Fine-granular Subscription Model
All elements come with a topic or name.
Prefixed-based subscription for topics.
Fine control what’s published and subscribed to.

13

Broker

Broker Bits & Pieces

Fine-granular Subscription Model
All elements come with a topic or name.
Prefixed-based subscription for topics.
Fine control what’s published and subscribed to.

Security Model
Peers are assumed to be trustworthy.
Currently no encryption/authentication; SSL later.

13

Broker

Broker’s Foundation: CAF

14

http://actor-framework.org

Broker

Broker’s Foundation: CAF

C++ Actor Framework
Concurrency through Erlang-style lightweight actors.
Concise messaging API.
Network-transparency abstracting transport.
Efficient and adaptive.
BSD license.

14

http://actor-framework.org

Broker

Broker’s Foundation: CAF

C++ Actor Framework
Concurrency through Erlang-style lightweight actors.
Concise messaging API.
Network-transparency abstracting transport.
Efficient and adaptive.
BSD license.

Trade-Offs
Needs a C++11 compiler.
Introduces a new, non-standard dependency.

14

http://actor-framework.org

Broker

The Future: A “Stateful Deep Cluster”

15

Broker

The Future: A “Stateful Deep Cluster”

15

Example: Geographically distributed organization.

Global Master Bro

Broker

The Future: A “Stateful Deep Cluster”

15

Example: Geographically distributed organization.

Bro
US

Bro
UK

Bro
FR

Bro
CN

Regional Heads

Global Master Bro

Broker

The Future: A “Stateful Deep Cluster”

15

Bro Bro Bro Bro Bro Bro Bro Bro

Local Clusters

Example: Geographically distributed organization.

Bro
US

Bro
UK

Bro
FR

Bro
CN

Regional Heads

Global Master Bro

Broker

The Future: A “Stateful Deep Cluster”

15

Bro Bro Bro Bro Bro Bro Bro Bro

Local Clusters

Example: Geographically distributed organization.

Bro
US

Bro
UK

Bro
FR

Bro
CN

Regional Heads

Global Master Bro

Corp/US/ Corp/UK/ Corp/FR/ Corp/CN/

Corp/GLOBAL/

Corp/US/… Corp/US/… Corp/UK/… Corp/UK/… Corp/FR/… Corp/FR/… Corp/CN/… Corp/CN/…

Broker

The Future: A “Stateful Deep Cluster”

15

Bro Bro Bro Bro Bro Bro Bro Bro

Local Clusters

Data
Node

Data
Node

Data
Node

Data
Node

Data
Node

Example: Geographically distributed organization.

Bro
US

Bro
UK

Bro
FR

Bro
CN

Regional Heads

Global Master Bro

Corp/US/ Corp/UK/ Corp/FR/ Corp/CN/

Corp/GLOBAL/

Corp/US/… Corp/US/… Corp/UK/… Corp/UK/… Corp/FR/… Corp/FR/… Corp/CN/… Corp/CN/…

Broker

Broker, beyond Bro

16

Broker

Broker, beyond Bro

16

Distributed,

real-time

publish/subscribe

platform,

with a data model.

Broker

What This All Means for You Right Now

17

Broker

What This All Means for You Right Now

Bro 2.4
Legacy communication still the primary mechanism.
Broker optional, —enable-broker to compile support. (CAF 0.13, C++11)

17

Broker

What This All Means for You Right Now

Bro 2.4
Legacy communication still the primary mechanism.
Broker optional, —enable-broker to compile support. (CAF 0.13, C++11)

Git master, as of today
Legacy communication still the primary mechanism.
Broker built by default, —disable-broker turns off. (CAF 0.14, C++11)

17

Broker

What This All Means for You Right Now

Bro 2.4
Legacy communication still the primary mechanism.
Broker optional, —enable-broker to compile support. (CAF 0.13, C++11)

Git master, as of today
Legacy communication still the primary mechanism.
Broker built by default, —disable-broker turns off. (CAF 0.14, C++11)

Bro 2.5 (tentative)
Broker provides primary communication mechanism.
Legacy communication deprecated, but remains available.

17

Broker

What This All Means for You Right Now

Bro 2.4
Legacy communication still the primary mechanism.
Broker optional, —enable-broker to compile support. (CAF 0.13, C++11)

Git master, as of today
Legacy communication still the primary mechanism.
Broker built by default, —disable-broker turns off. (CAF 0.14, C++11)

Bro 2.5 (tentative)
Broker provides primary communication mechanism.
Legacy communication deprecated, but remains available.

Bro 2.6 (even more tentative)
Broker provides primary communication mechanism.
Legacy communication no longer available.

17

Broker

What This All Means for You Right Now

Bro 2.4
Legacy communication still the primary mechanism.
Broker optional, —enable-broker to compile support. (CAF 0.13, C++11)

Git master, as of today
Legacy communication still the primary mechanism.
Broker built by default, —disable-broker turns off. (CAF 0.14, C++11)

Bro 2.5 (tentative)
Broker provides primary communication mechanism.
Legacy communication deprecated, but remains available.

Bro 2.6 (even more tentative)
Broker provides primary communication mechanism.
Legacy communication no longer available.

17

Credit for Broker goes to Jon Siwek!

Robin Sommer
ICSI / LBNL / Broala

robin@icsi.berkeley.edu
robin@broala.com

http://www.icir.org/robin

Questions?

mailto:robin@icir.org

