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Use Case: External Integration
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Traditional Implementation

Events

It’'s showing its age ...

Race conditions with &synchronized.

Bro A Bro B

NO good persistence story.

Not much control over data flow.
Complex & inefficient protocol.
Implementation deficiencies.

Two Independent implementations.

@ - brodia

| ————




Introducing the Broker Library

Events
Logs
State Updates

Bro A Bro B

| |
@ brodia



Introducing the Broker Library

Events
Logs
State Updates

Bro A Broker < » Broker Bro B

| |
@ brodia



Introducing the Broker Library

Events
Logs
State Updates

Bro A Broker < x > Broker Bro B
\ 4
Broker
C
Application C++
Python

] |
@ brodia



Introducing the Broker Library

Events
Logs
State Updates

Bro A Broke Broker Bro B

Unified Library

New protocol
Publish/subscribe

Limiting type system’s flexibility.
Explicit state operations.
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Exchanging Events with Broker

my event(“Bro”, 42)
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Exchanging Events with Broker

subscribe to events(“bro/event”)

Topic: “bro/event”

my event(“Bro”, 42) g my event(“Bro”, 42)
<
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Exchanging Events with Broker

Demo
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Forwarding Logs with Broker

Log::write(..)
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Forwarding Logs with Broker

subscribe to logs(“bro/log”)

Topic: “bro/log”

Log: :write(..) § Log: :write(..)
<
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Data Stores with Broker

Broker maintains global, persistent key/value stores.
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Data Stores with Broker
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Data Store Features

Data Types
Supports Bro data types for keys & values.

Operations
Increment/decrement.
Set insert/delete.
Vector push/pop.

Automatic expiry.

Persistence
Choice of SQLite or RocksDB.
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Broker Bits & Pieces

Fine-granular Subscription Model

All elements come with a topic or name.
Prefixed-based subscription for topics.
Fine control what's published and subscribed to.

Security Model

Peers are assumed to be trustworthy.
Currently no encryption/authentication; SSL later.
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Broker’s Foundation: CAF

C++ Actor Framework
Concurrency through Erlang-style lightweight actors.
Concise messaging API.
Network-transparency abstracting transport.

Efficient and adaptive.
BSD license.

Trade-0Offs

Needs a C++11 compiler.
Introduces a new, non-standard dependency.

C++ Actor Framework
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Broker, beyond Bro

Distributed,
real-time

publish/subscribe

platform,

with a data model.

Broker

(00 v




What This All Means for You Right Now

(00 v

Broker 17




What This All Means for You Right Now

Bro 2.4

Legacy communication still the primary mechanism.
Broker optional, —enable-broker to compile support. (CAF0.13, C++11)

(00 v

Broker 17




What This All Means for You Right Now

Bro 2.4

Legacy communication still the primary mechanism.
Broker optional, —enable-broker to compile support. (CAF0.13, C++11)

Git master, as of today

Legacy communication still the primary mechanism.
Broker built by default, —disable-broker turns off.  (CAF0.14, C++11)

(00 v

Broker 17




What This All Means for You Right Now

Bro 2.4

Legacy communication still the primary mechanism.
Broker optional, —enable-broker to compile support. (CAF0.13, C++11)

Git master, as of today

Legacy communication still the primary mechanism.
Broker built by default, —disable-broker turns off.  (CAF0.14, C++11)

Bro 2.5 (tentative)

Broker provides primary communication mechanism.
Legacy communication deprecated, but remains available.

(00 v

Broker 17




What This All Means for You Right Now

Bro 2.4

Legacy communication still the primary mechanism.
Broker optional, —enable-broker to compile support. (CAF0.13, C++11)

Git master, as of today

Legacy communication still the primary mechanism.
Broker built by default, —disable-broker turns off.  (CAF0.14, C++11)

Bro 2.5 (tentative)

Broker provides primary communication mechanism.
Legacy communication deprecated, but remains available.

Bro 2.6 (even more tentative)

Broker provides primary communication mechanism.
Legacy communication no longer available.

® 0(00

Broker 17
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Credit for Broker goes t

— 0 Jon Siwekr
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