
Detecting Quantum Insert
Using Bro-IDS

5 August - BroCon 2015

Yun Zheng Hu
Fox-IT Security Research Team



@YunZhengHu

github.com/fox-it

Yun Zheng Hu
Principal Security Expert

$ whoami

www.fox-it.com

http://github.com/fox-it
http://www.fox-it.com


Fox-IT
Delft, Netherlands

DELFT



Past contributions to Bro

• BIT-968: bytestring_to_count()

• BIT-969: reverse()

https://bro-tracker.atlassian.net/browse/BIT-968
https://bro-tracker.atlassian.net/browse/BIT-969


Agenda

• What is QUANTUM INSERT? 

• How to perform QUANTUM INSERT? 

• Detection 

• Demo 

• Injections we detected in the wild



What is 
QUANTUMINSERT?



What is QUANTUMINSERT?
• Snowden leaks 

• Codename for TCP hijacking 

• Specifically targeting HTTP 

• More injection than hijacking 

• React faster than other servers 

• Win race condition



Other QUANTUM attacks

Name Description

QUANTUMDNS DNS Injection/Redirection of A 
records

QUANTUMBOT Hijacking idle IRC bots and c&c 
communication from bots.

QUANTUMSKY Deny access to webpage by 
injecting/spoofing RST packets

QUANTUMBISCUIT Enhance QI behind large proxies

source: https://firstlook.org/theintercept/document/2014/03/12/one-way-quantum/

https://firstlook.org/theintercept/document/2014/03/12/one-way-quantum/


Slide that started it all

source: https://www.eff.org/files/2015/01/23/20150117[...]network_based_anomaly_.pdf

https://www.eff.org/files/2015/01/23/20150117-speigel-csec_document_about_the_recognition_of_trojans_and_other_network_based_anomaly_.pdf


Security Research Team

• How does it really work? 

• Perform a successful Quantum Insert 

• Capture a PCAP (or it didn’t happen) 

• Check existing IDS software for detection





Initial IDS Coverage

• Bro should detect it using rexmit_inconsistency, 
but it didn’t work 

• Snort protocol decoders did not trigger anything 

• Suricata did not trigger anything, needed: 

• stream-event:reassembly_overlap_different_data



Howto QUANTUM



TCP 3-way Handshake

1. SYN 

2. SYN/ACK response 

3. ACK

SYN seq=x

SYN-ACK ack=x+1 seq=y

ACK ack=y+1 seq=x+1

Client Server

[data]



TCP Hijacking

• Kevin Mitnick 

• Successfully hijacked a remote TCP session 

• Predicted the TCP sequence numbers 

• Nowadays, TCP sequence numbers are random 

• Have to sniff and leak the information



QI vs TCP Injection

• Quantum Insert is TCP packet injection 

• But specifically against HTTP sessions 

• Confirms target by checking tracking Cookies 

• Uses a monitor to leak the information 

• Uses a shooter to spoof and insert the packet



Requirements

• Observe & Leak TCP Session information 

• Able to spoof packets 

• Racing the response (be faster)



TCP Injection
Client ServerShooterRouter

SYN



TCP Injection
Client ServerShooterRouter

SYNseq=x



TCP Injection
Client ServerShooterRouter

SYNseq=x
SYN+ACK



TCP Injection
Client ServerShooterRouter

SYNseq=x
SYN+ACK ack=x+1, seq=y



TCP Injection
Client ServerShooterRouter

SYNseq=x
SYN+ACK ack=x+1, seq=y

ACK



TCP Injection
Client ServerShooterRouter

SYNseq=x
SYN+ACK ack=x+1, seq=y

ACKack=y+1, seq=x+1



TCP Injection
Client ServerShooterRouter

SYNseq=x
SYN+ACK ack=x+1, seq=y

ACKack=y+1, seq=x+1
PSH+ACK
HTTP GET



TCP Injection
Client ServerShooterRouter

SYNseq=x
SYN+ACK ack=x+1, seq=y

ACKack=y+1, seq=x+1
PSH+ACK
HTTP GET

QI TIP
{src,dst} {ip,port} 

x, y, len



TCP Injection
Client ServerShooterRouter

SYNseq=x
SYN+ACK ack=x+1, seq=y

ACKack=y+1, seq=x+1

QI TIP
{src,dst} {ip,port} 

x, y, len

PSH+ACK
HTTP GETack=y, seq=x



TCP Injection
Client ServerShooterRouter

SYNseq=x
SYN+ACK ack=x+1, seq=y

ACKack=y+1, seq=x+1

QI TIP
{src,dst} {ip,port} 

x, y, len

PSH+ACK
HTTP GETack=y, seq=x

PSH+ACK
302 Redirect

ACK



TCP Injection
Client ServerShooterRouter

SYNseq=x
SYN+ACK ack=x+1, seq=y

ACKack=y+1, seq=x+1

QI TIP
{src,dst} {ip,port} 

x, y, len

PSH+ACK
HTTP GETack=y, seq=x

PSH+ACK
302 Redirect ack=x+len, seq=y

ACK



TCP Injection
Client ServerShooterRouter

SYNseq=x
SYN+ACK ack=x+1, seq=y

ACKack=y+1, seq=x+1

QI TIP
{src,dst} {ip,port} 

x, y, len

PSH+ACK
HTTP GETack=y, seq=x

PSH+ACK
302 Redirect ack=x+len, seq=y

ACK ack=x+len, seq=y



TCP Injection
Client ServerShooterRouter

SYNseq=x
SYN+ACK ack=x+1, seq=y

ACKack=y+1, seq=x+1

QI TIP
{src,dst} {ip,port} 

x, y, len

PSH+ACK
HTTP GETack=y, seq=x

PSH+ACK
302 Redirect ack=x+len, seq=y

ACK ack=x+len, seq=y
PSH+ACK

200 OK



TCP Injection
Client ServerShooterRouter

SYNseq=x
SYN+ACK ack=x+1, seq=y

ACKack=y+1, seq=x+1

QI TIP
{src,dst} {ip,port} 

x, y, len

PSH+ACK
HTTP GETack=y, seq=x

PSH+ACK
302 Redirect ack=x+len, seq=y

ACK ack=x+len, seq=y
PSH+ACK

200 OK ack=x, seq=y



TCP Injection
Client ServerShooterRouter

QI TIP
{src,dst} {ip,port} 

x, y, len
PSH+ACK

302 Redirect

SYN+ACK

SYN

ACK
PSH+ACK
HTTP GET

ACK
PSH+ACK

200 OK

seq=x
ack=x+1, seq=y

ack=y+1, seq=x+1
ack=y, seq=x

ack=x+len, seq=y
ack=x, seq=y

ack=x+len, seq=y



TCP segment overlap

• Client receives: 

• Spoofed & Inserted packet 

• Original HTTP response packet 

• Attacker can easily solve this, eg by specifying: 

• Content-Length: 0



Overlapping TCP segments
HTTP/1.1 302 Found 
Location: http://fox-it.com/ 
Content-Length: 0 

Packet #1 - Sequence 1 (Length 71)



HTTP/1.1 200 OK 
Server: nginx 
Date: Tue, 21 Apr 2015 19:17:30 GMT 
Content-Type: text/html 
Last-Modified: Tue, 21 Apr 2015 19:16:41 GMT 
Connection: close 
ETag: "5536a219-1caf5" 
Accept-Ranges: bytes 
Vary: Accept-Encoding, User-Agent 
Content-Encoding: gzip 
Transfer-Encoding: chunked 

6dca …

Overlapping TCP segments
HTTP/1.1 302 Found 
Location: http://fox-it.com/ 
Content-Length: 0 

Packet #1 - Sequence 1 (Length 71)

Packet #2 - Sequence 1 - (Length 1448)



Last-Modified: Tue, 21 Apr 2015 19:16:41 GMT 
Connection: close 
ETag: "5536a219-1caf5" 
Accept-Ranges: bytes 
Vary: Accept-Encoding, User-Agent 
Content-Encoding: gzip 
Transfer-Encoding: chunked 

6dca …

Overlapping TCP segments
HTTP/1.1 302 Found 
Location: http://fox-it.com/ 
Content-Length: 0 

Reassembled Data



Getting more speed

• Injecting on the first SYN-ACK response from the 
Server 

• Improved speed 

• But cannot confirm request/victim



Detecting Quantum 
Insert



How to detect QI

• QI results in duplicate sequence numbers 

• Which means TCP segment overlap 

• Check if overlapping segments are different



Other packet artefacts

• Time to Live usually differs from other packets 

• Can give away where in the chain the packets 
are being injected 

• Could have different TCP options



Bro policy

• Uses tcp_packet callback 

• keeps track of the last sequence number and 
payload of a connection 

• check for duplicate sequence numbers 

• check for payload difference 

• Inefficient but works



Bro patches

• Integrated in the TCP Reassembly code 

• Rolling buffer of old segments, configureable 
using tcp_max_old_segments 

• Overlapping segments with different data will 
trigger the rexmit_inconsistency event 

• Merged in commit c1f060be on June 28 2015

https://github.com/bro/bro/commit/c1f060be63ad72d37b37e5649887d4c047c116e1


Demo



Demo Setup

router

target

shooter

Internet

LAN WAN



TCP Injections in the wild



Examples of detected QI

• Network Appliances performing TCP injection 

• Blocking content, such as ads 

• Some Chinese websites result in TCP injection 

• Mostly for blocking purposes



False positives?

• SSL Traffic 

• Window size changes 

• Recommendations: 

• Ignore SSL/TLS 

• Limit to HTTP responses



Research

• All the research, pcaps, and tools are published 
on our GitHub and blog: 

• https://github.com/fox-it/quantuminsert 

• blog.fox-it.com/2015/04/20/deep-dive-into-
quantum-insert/

https://github.com/fox-it/quantuminsert
http://blog.fox-it.com/2015/04/20/deep-dive-into-quantum-insert/


Recommendations
• As a server 

• Use SSL + HTTP Strict Transport Security 

• Resources should be over SSL as well 

• As a client 

• Use https directly, don’t rely on redirects 

• Isolated VM for browsing only



Questions?



Bonus Bro policy!
• meterpreter.bro 

• Detect Metasploit meterpreter payload transfer 

• Nice for lateral movement detection! 

• Uses sequence numbers to check the size 

• Will be available after the talk: 

• https://github.com/fox-it/bro-scripts

https://github.com/fox-it/bro-scripts

