
Inside Broker
How Broker Leverages the

C++ Actor Framework (CAF)
Dominik Charousset

iNET RG, Department of Computer Science
Hamburg University of Applied Sciences

Bro4Pros, February 2017

1

What was Broker
again?

2

Problem at Hand

3

Bro A Bro B

User
App.

State Updates
Events
Logs

Traditional Approach

4
Broker

Traditional Implementation

5

Bro A
Child

Process

Child

Process
Bro B

libbroccoli

Events
Logs

State Updates

Events

C Python Ruby Perl

Image source: Robin Sommer, BroCon 2015

Traditional Issues

• Persistency issues

• Possible race conditions with &synchronized

• Limited control over data flow

5

Broker Approach

6
Image source: Robin Sommer, BroCon 2015Broker

Introducing the Broker Library

6

Bro A Bro BBroker Broker

Broker

C
C++

Python
Application

Events
Logs

State Updates

Broker Benefits

• Grant unified access to Bro events

• Empower users to manage state

• Provide a global, persistent key/value store

7

How does CAF relate
to Bro?

8

Broker in Context

M

C

M

C C

CC

Bro: monitor the network Broker: distribute network insights

Events

9

M

C

M

C C

CC

Bro: monitor the network Broker: distribute network insights

Events

CAF

Broker's Goals

• Provide flexible pub/sub data distribution

• Enable distributed, deep detection

• Support data-intense algorithms on realtime events

10

Broker's Requirements

• Efficient communication layer

• Expressive data model

• Persistent storage

11

Fueling Broker

• Broker uses CAF to meet its requirements:

• Structure: endpoints & messages

• Communication: send & receive

• Network: connect peers & distribute data

12

CAF in a Nutshell

• Programming interface based on the actor model

• Configurable runtime for infrastructure software*

• Emphasis on reliability, efficiency & maintainability

13

*following def. in: Bjarne Stroustroup, Software Development 
for Infrastructure, IEE Computer 45, 2012.

What is our vision for a
next-gen Bro?

14

Deep Detection

• Correlation in multi-hop processing pipelines

• Distribution with pub/sub data access

• Resilience through replicated data stores

15

Bro Cluster

16

Internet Local Network
Goal: monitor critical
communication path.Internet Local Network
Goal: monitor critical
communication path.Tap

Frontend

Packets

#1: split traffic into many
streams/flows.

Internet Local Network
Goal: monitor critical
communication path.Tap

Frontend

Packets

#1: split traffic into many
streams/flows.

… …Worker Worker Worker #2: (stateful) traffic monitoring
and protocol analysis.

Internet Local Network
Goal: monitor critical
communication path.Tap

Frontend

Packets

#1: split traffic into many
streams/flows.

… …Worker Worker Worker #2: (stateful) traffic monitoring
and protocol analysis.

Manager

Logs

#3: combine and post-process
worker-generated logs.

Internet Local Network
Goal: monitor critical
communication path.Tap

Frontend

Packets

#1: split traffic into many
streams/flows.

… …Worker Worker Worker #2: (stateful) traffic monitoring
and protocol analysis.

Manager

Logs

#3: combine and post-process
worker-generated logs.

Proxy

State

Internet Local Network
Goal: monitor critical
communication path.Tap

Frontend

Packets

#1: split traffic into many
streams/flows.

… …Worker Worker Worker #2: (stateful) traffic monitoring
and protocol analysis.

Manager

Logs

#3: combine and post-process
worker-generated logs.

Proxy

State

Vision for a next-gen
Bro with CAF.Internet Local Network

Goal: monitor critical
communication path.Tap

Frontend

Packets

#1: split traffic into many
streams/flows.

… …Worker Worker Worker #2: (stateful) traffic monitoring
and protocol analysis.

Manager

Logs

#3: combine and post-process
worker-generated logs.

Proxy

State

Vision for a next-gen
Bro with CAF.

#1: agile rebalancing via
netcontrol & broker.

Internet Local Network
Goal: monitor critical
communication path.Tap

Frontend

Packets

#1: split traffic into many
streams/flows.

… …Worker Worker Worker #2: (stateful) traffic monitoring
and protocol analysis.

Manager

Logs

#3: combine and post-process
worker-generated logs.

Proxy

State

Vision for a next-gen
Bro with CAF.

#1: agile rebalancing via
netcontrol & broker.

#2: pub/sub & consensus
instead of shared state.

Internet Local Network
Goal: monitor critical
communication path.Tap

Frontend

Packets

#1: split traffic into many
streams/flows.

… …Worker Worker Worker #2: (stateful) traffic monitoring
and protocol analysis.

Manager

Logs

#3: combine and post-process
worker-generated logs.

Proxy

State

Vision for a next-gen
Bro with CAF.

#1: agile rebalancing via
netcontrol & broker.

#2: pub/sub & consensus
instead of shared state.

#3: fault-tolerance & failover
through snapshotting.

Leveraging CAF

• Bro has to grow with user demands

• Scaling up and out is key to meet future work loads

• CAF provides building blocks for a next-gen Bro

17

What is CAF, exactly?

18

Scalable Abstractions
• Actors avoid race conditions by design

• Unified API for concurrency & distribution

• Compose large systems from small components

• Scale runtime from the IoT up to HPC

Microcontrollers Servers Supercomputers

19

The Actor Model

• Asynchronous message passing

• No shared state

• Divide & conquer work flow

• Hierarchical failure handling & propagation

20

FIFO mailbox

Actor

Anatomy of an Actor
Actor

Address to an actor
(allows enqueueing of messages)

21

Actor

Address to an actor
(allows enqueueing of messages)

Processing
(Control Loop)

Dequeue
Message

Invoke
Behavior

done?

yes

no

Actor

Address to an actor
(allows enqueueing of messages)

Processing
(Control Loop)

Dequeue
Message

Invoke
Behavior

done?

yes

no

Storage (State)

int count;
string foo;
...

Internal Variables

[=](int x) {
 count += x;
}
...

Message Handlers (Behavior)

Actor

Address to an actor
(allows enqueueing of messages)

Processing
(Control Loop)

Dequeue
Message

Invoke
Behavior

done?

yes

no

Storage (State)

int count;
string foo;
...

Internal Variables

[=](int x) {
 count += x;
}
...

Message Handlers (Behavior)

…

Communication (via FIFO mailbox)

CAF's Architecture

Actor

22

Message
Actor

NodeNode
Process

Message
Actor

NodeNode
Process

GPU

GPGPUMessage
Actor

NodeNode
Process

GPU

GPGPU

Actor SystemActor System

Distribution Layer

Message
Actor

NodeNode
Process

GPU

GPGPU

Actor SystemActor System

Distribution Layer Socket API Thread API

Network
Middleman

Cooperative
Scheduler

OpenCL

GPGPU
Wrapper

Network
CPU

Message
Actor

Communication Patterns

• CAF offers various messaging primitives:

• Asynchronous "fire & forget" messages

• Request/response messaging (with timeouts)

• Pub/sub-based group communication

• Streaming pipelines (soon-ish)

23

CAF Facts Sheet

• Developed at iNET research group

• First commit: March 4, 2011

• Active international community

• > 40,000 lines of code (https://www.openhub.net/p/actor-framework)

24

What is next?

25

Streaming

• Streams as first-class citizen in CAF

• Priority-aware message processing

• Re-deployable actor pipelines with back pressure

26

Streaming Concept

source stage sink

data flows downstream

demand flows upstream

errors are propagated both ways

27

Streaming Bro Events

0100100001000
1010100110001
0011000100111
1010010000100
0101010011000
1001000100111
100010…

0100100001000
1010100110001
0011000100111
1010010000100
0101010011000
1001000100111
100010…

CAF Application

Parser Worker

Critical real-
time data
import.

Best-
effort file
imports.

Server

28

High-level Clustering

• Declarative API for deploying actors & pipelines

• Dynamic redeployment & -configuration

• Monitoring of running CAF applications

29

Debugging Support
• Debugging distributed applications is challenging

• CAF's logs can reproduce causal ordering

• Visualization helps devs understand their system,
e.g., with ShiViz:

30

Image source: https://bitbucket.org/bestchai/shiviz/wiki/Home

ShiViz* UI with CAF App.

31
* see: https://bestchai.bitbucket.io/shiviz/

Tracing

• Lightweight monitoring of data flows

• Captures causal and temporal ordering of events

• Recording (debugging) or sampling (monitoring)

32

Tracing: Example

33

N1

N4

N3

N2

N5

N6

N7

Monitor

N1

N4

N3

N2

N5

N6

N7

Monitor Inject Annotated Request

(N4)

(N4, N5)

(N4, N5, N6)

(N4, N5, N6, N2)

(N4, N5, N6, N2, N1)

Tracing: Visualization

34

Path in the system Causal and temporal relationship

Management

Frontend

Backend

XUser

A

B C

D E

Request

Response

rpc1 rpc2

rpc3 rpc4

(time)

Request

rpc1

rpc2

rpc3

rpc4

Fig. mod. from: Benjamin Sigelman et al., Dapper, a Large-Scale Distributed
Systems Tracing Infrastructure, Google Technical Report, 2010.

Thanks for Listening

• bro/broker

• actor-framework

• actor_framework

35

