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What was Broker 
again?
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Problem at Hand
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Traditional Approach
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Traditional Issues

• Persistency issues 

• Possible race conditions with &synchronized 

• Limited control over data flow
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Broker Approach
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Broker Benefits

• Grant unified access to Bro events 

• Empower users to manage state 

• Provide a global, persistent key/value store
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How does CAF relate 
to Bro?
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Broker in Context
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Broker's Goals

• Provide flexible pub/sub data distribution 

• Enable distributed, deep detection 

• Support data-intense algorithms on realtime events
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Broker's Requirements

• Efficient communication layer 

• Expressive data model 

• Persistent storage
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Fueling Broker

• Broker uses CAF to meet its requirements: 

• Structure: endpoints & messages 

• Communication: send & receive 

• Network: connect peers & distribute data
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CAF in a Nutshell

• Programming interface based on the actor model 

• Configurable runtime for infrastructure software* 

• Emphasis on reliability, efficiency & maintainability

13

*following def. in: Bjarne Stroustroup, Software Development 
for Infrastructure, IEE Computer 45, 2012. 



What is our vision for a 
next-gen Bro?
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Deep Detection

• Correlation in multi-hop processing pipelines 

• Distribution with pub/sub data access 

• Resilience through replicated data stores
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Bro Cluster
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Leveraging CAF

• Bro has to grow with user demands 

• Scaling up and out is key to meet future work loads 

• CAF provides building blocks for a next-gen Bro
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What is CAF, exactly?
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Scalable Abstractions
• Actors avoid race conditions by design 

• Unified API for concurrency & distribution 

• Compose large systems from small components 

• Scale runtime from the IoT up to HPC

Microcontrollers Servers Supercomputers
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The Actor Model

• Asynchronous message passing 

• No shared state 

• Divide & conquer work flow 

• Hierarchical failure handling & propagation
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Anatomy of an Actor
Actor

Address to an actor
(allows enqueueing of messages)
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CAF's Architecture

Actor
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Communication Patterns

• CAF offers various messaging primitives: 

• Asynchronous "fire & forget" messages 

• Request/response messaging (with timeouts) 

• Pub/sub-based group communication 

• Streaming pipelines (soon-ish)
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CAF Facts Sheet

• Developed at iNET research group 

• First commit: March 4, 2011 

• Active international community 

• > 40,000 lines of code (https://www.openhub.net/p/actor-framework)
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What is next?
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Streaming

• Streams as first-class citizen in CAF 

• Priority-aware message processing 

• Re-deployable actor pipelines with back pressure
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Streaming Concept

source stage sink

data flows downstream

demand flows upstream

errors are propagated both ways
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Streaming Bro Events
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High-level Clustering

• Declarative API for deploying actors & pipelines 

• Dynamic redeployment & -configuration 

• Monitoring of running CAF applications
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Debugging Support
• Debugging distributed applications is challenging 

• CAF's logs can reproduce causal ordering 

• Visualization helps devs understand their system, 
e.g., with ShiViz:
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Image source: https://bitbucket.org/bestchai/shiviz/wiki/Home



ShiViz* UI with CAF App.
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* see: https://bestchai.bitbucket.io/shiviz/



Tracing

• Lightweight monitoring of data flows 

• Captures causal and temporal ordering of events 

• Recording (debugging) or sampling (monitoring)
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Tracing: Example
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Tracing: Visualization
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Thanks for Listening

• bro/broker 

• actor-framework 

• actor_framework
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